Правила безопасной работы в лаборатории. Техника безопасности в химической лаборатории

Меры предосторожности и оказание первой помощи пострадавшим

Общие правила работы в лаборатории

1. До занятия необходимо внимательно ознакомиться с темой работы, используя методические пособия, учебник и конспект лекции.

2. В химической лаборатории следует работать в халате! В лаборатории запрещается снимать и развешивать верхнюю одежду , громко разговаривать, принимать пищу, курить, включать и выключать рубильники и трогать приборы, не относящиеся к данной работе.

3. Рабочее место надо содержать в чистоте, не загромождая его предметами, не относящимися к данной работе. Реактивы, пролитые или рассыпанные на столе или на полу, следует тотчас же нейтрализовать и убрать.

4. Лишние книги и тетради, а тем более посторонние предметы, не должны находиться на рабочем столе. Методические пособия, необходимые для работы, и рабочие тетради следует оберегать от попадания на них воды, кислот, щелочей и других химических реактивов.

5. Реактивы, предназначенные для общего пользования, нельзя уносить на свое рабочее место. Чтобы не спутать пипетки, применяемые для взятия реактивов, и пробки от склянок, после взятия требуемого количества реактива их следует немедленно возвращать на место. Сухие реактивы берут чистым микрошпателем или специальной ложечкой.

6. После использования реактивов, содержащих серебро или тяжелые металлы, их следует выливать в специальные банки.

7. По окончании работы необходимо убрать рабочее место, выключить электронагревательные приборы, закрыть воду и газ. Перед уходом из лаборатории следует еще раз проверить закрыты ли водопроводные краны и выключены ли электроприборы.

Техника безопасности и меры предосторожности

1. Все опыты, связанные с применением или образованием ядовитых веществ, а также вредных паров и газов, разрешается проводить только в вытяжном шкафу, дверцы которого должны быть опущены на треть. В случае прекращения работы вентиляционных установок опыты в вытяжных шкафах должны быть немедленно прекращены.

2. Запрещается производить опыты со всевозможными взрывчатыми и огнеопасными смесями. Опыты с малыми количествами (1–2 мл) легко воспламеняющихся веществ (например, со спиртовыми, гексановыми или бензольными растворами) проводят только вдали от огня.

3. При нагревании и кипячении растворов в пробирке необходимо пользоваться держателями и следить за тем, чтобы отверстие пробирки не было обращено в сторону самого работающего, соседа по столу. Это особенно важно соблюдать при нагревании концентрированных растворов кислот и щелочей.

4. Не следует наклоняться над сосудом, в котором происходит нагревание или кипячение жидкости, во избежание попадания брызг в лицо и глаза. При необходимости определить запах паров или выделяющегося газа не вдыхать их непосредственно из рабочего сосуда, а легким движением руки направить газы к себе и осторожно вдохнуть.

5. При разбавлении концентрированных кислот (особенно серной) и щелочей следует небольшими порциями вливать кислоту (или щелочь) в воду , а не наоборот, непрерывно помешивая раствор.

Оказание первой помощи

1. При воспламенении горючей жидкости на одежде работающего необходимо немедленно погасить пламя на пострадавшем, завернув его в асбестовое или шерстяное одеяло, которое должно находиться в лаборатории на постоянном, заранее известном месте.

2. При ожогах концентрированными растворами кислот обожженное место промывают сильной струей воды в течение 2–3 мин, затем 2–3%-ным раствором соды, после чего накладывают марлевую повязку, смоченную 1–2%-ным раствором перманганата калия. При сильных ожогах следует после оказания первой помощи обратиться к врачу.

3. При ожогах концентрированными растворами щелочей обожженное место промывают обильным количеством воды до тех пор, пока кожа не перестанет казаться скользкой, затем 1–2%-ным раствором борной или уксусной кислоты, после чего накладывают марлевую повязку, смоченную спиртовым раствором танина или 1–2%-ным раствором перманганата калия.

4. При ожогах горячими металлами или стеклом обожженное место многократно смачивают раствором перманганата калия и спиртом, а затем смазывают мазью от ожогов.

5. При попадании кислоты, щелочи или какого-либо другого реактива в глаза их следует сразу же промыть обильным количеством воды и немедленно направить пострадавшего к врачу.

6. При больших порезах рану ни в коем случае не промывать водой! Кровь сама очищает рану. Прочно сидящие в ране чужеродные тела, например, осколки стекла, нельзя удалять без врача. Рану забинтовать стерильным сухим бинтом. Не употреблять вату! При сильном кровотечении наложить жгут выше раны.

7. При отравлении сероводородом, хлором, парами брома, оксидом углерода пострадавшего надо вывести на свежий воздух, а затем направить к врачу.

8. При отравлении солями ртути и других тяжелых металлов необходимо немедленно обратиться к врачу.

ПРАВИЛА РАБОТЫ С ПРИБОРАМИ

Порядок работы с иономером «Эксперт – 001»

Ионометрические измерения рХ (рН), молярной и массовой

Концентрации ионов в режиме «рН-метр – иономер»

На приборе «Эксперт – 001»

Выбор измеряемого иона

Выберите ион, по которому вы будете проводить градуировку и выполнение контрольной задачи. Для этого нажмите кнопку «ИОН» и кнопками «и«4» выберите из общего списка требуемый ион, например, калий «К» . На дисплее появится надпись с обозначением определяемого иона и его молярной массой:

Выберите ион, нажмите кнопку «ВВОД». На дисплее появится окно выбора режима «рН-МЕТР – ИОНОМЕР» .

2. Градуировка (калибровка) анализатора по выбранному иону. (Порядок проведения градуировки на примере иона калия)

2.1. Установление количества точек градуировки

После выхода в окно выбора режима «рН-МЕТР – ИОНОМЕР» нажмите кнопку «КЛБ» для перехода в состояние градуировки. На дисплее появится надпись:

В верхней строчке отобразится обозначение текущего режима «Калибр. ион» , строкой ниже - символ определяемого иона, в данном случае иона калия«К» . Вместо прочерков будут проставлены значения концентрации (в единицах мг/л и рХ), э.д.с. для первой точки градуировки (п1 ) и в правом нижнем углу после дробной черты - количество точек градуировки (N) , сохранённые в памяти анализатора после последней градуировки.

Примечание - Для градуировки pH значение концентрации в единицах мг/л не отображается.

Приступая к новой градуировке, в первую очередь необходимо ввести число точек градуировки (N) , равное числу приготовленных градуировочных растворов.

Внимание! Следите, чтобы установленное число точек градуировки совпадало с количеством градуировочных растворов, и чтобы на всех заявленных точках были выполнены измерения э.д.с. электродной системы в соответствующих растворах.

Для ввода числа точек градуировки нажмите кнопку с символом «N» красного цвета. На дисплее появиться надпись:

Мигающий прямоугольник указывает на готовность прибора к вводу нового значения N. Введите число точек градуировки (от 2 до 5) нажатием кнопки с соответствующей цифрой, например «3» или выберите нужную цифру, перебирая цифры от 2 до 5 с помощью кнопок «Þ » и «Ü », и нажмите кнопку «ВВОД». Выбранное число точек градуировки зафиксируется в правом нижнем углу дисплея:

2.2. Ввод значений рХ или массовых концентраций точек градуировки и измерение э.д.с.

Для каждой точки градуировки выполняют ввод значения рХ или массовой концентрации (в мг/л) соответствующего градуировочного раствора и измерение э.д.с. электродной системы в этом растворе с последующим сохранением (после стабилизации) измеренного значения в памяти анализатора.

Для ввода значения рХ первого градуировочного раствора нажмите кнопку «ЧИСЛ» . В месте ввода значения рХ появится мигающий прямоугольник:

Наберите на клавиатуре число, соответствующее значению рХ первого градуировочного раствора, например, «5»:

Примечание - Чтобы удалить набранную цифру, нажмите кнопку «Ü ». Каждое нажатие удаляет последнюю набранную цифру. Данная операция применяется в случае необходимости исправлений при вводе численных значений (здесь и далее).


При этом анализатор автоматически рассчитает и отобразит на дисплее соответствующее значение массовой концентрации иона калия.

В случае если градуировочные расгворы приготовлены в единицах массовой концентрации, пользователь имеет возможность вводить в память анализатора значения концетраций в единицах «мг/л» без пересчета в единицы рХ. Для ввода значения массовой концентрации первого градуировочного раствора нажмите кнопку «мг/л». В месте вводи значения массовой концентрации появится мигающий прямоугольник:

Наберите на клавиатуре число, соответствующее значению массовой концентрации первого градуировочного раствора в мг/л, например, «0,5»:

Нажмите кнопку «ВВОД». Набранное значение зафиксируется и на дисплее появится надпись:

При этом анализатор автоматически рассчитает и отобразит на дисплее соответствующее значение рХ.

Погрузите электроды в первый градуировочный раствор и нажмите кнопку «ИЗМ». Начнётся измерение э.д.с., на дисплее появится надпись «Измерение» и показание таймера (время с начала измерения). В левом верхнем углу дисплея появится символ степени заряда аккумулятора:

После того, как значение э.д.с. установится (дрейф значения э.д.с. не более ±1,5 мВ/мин, нажмите кнопку «ВВОД». Появится запрос:

Для подтверждения нажмите кнопку «ВВОД». Появится надпись с результатами градуировки для точки «п1 »:

Извлеките электроды из первого градуировочного раствора, промойте дистиллированной водой, осушите фильтровальной бумагой и погрузите во второй градуировочный раствор.

Перейдите ко второй точке градуировки «п2» . Для этого нажмите кнопку «4» . На дисплее установится окно градуировки для точки п2 (в правом нижнем углу дисплея «п1» заменится на «п2».

Градуировка по второму и остальным градуировочным растворам производится гак же, как и для первого градуировочного раствора.

Примечание - Градуировку следует проводить, начиная со стандартных растворов с наименьшей концентрацией, последовательно переходя к более концентрированным растворам, т.е. от больших значений рХ к малым.

2.3. Выполнение ионометрических измерений

Погрузите электроды в анализируемый раствор. Выберите режим «рН-МЕТР-ИОНОМЕР». Нажмите кнопку «ИОН», кнопками «4» и « выберите из списка ион, измерение содержания которого вы планируете проводить, например калий («К»), и нажмите кнопку «ВВОД» (выбор иона производится в соответствие с п.1).

После выхода в режим «рН-МЕТР-ИОНОМЕР» нажмите кнопку «ИЗМ». Прибор перейдёт в состояние измерения выбранного иона (в данном случае иона калия) и на дисплее появится надпись:

В первой строке сверху появится символ состояния заряда аккумулятора и показание таймера. Во второй строке отобразится название текущего режима измерения «рН-метр- иономер». В третьей - определяемый ион, выбранный пользователем (в данном случае калий). В нижней строке - результат измерения.

Для представления результата измерения в разных единицах нажмите соответствующие кнопки: «мВ» - для представления в единицах э.д.с. электродной системы (мВ), «рХ» - для представления в единицах отрицательного десятичного логарифма активности (рХ), «М» - в единицах молярной концентрации (моль/л или ммоль/л) или «мг/л» - в единицах массовой концентрации (мг/л):

Стабилизация показаний происходит примерно через 2-3 минуты. Для более точной оценки стабилизации показаний выберите единицы измерения «мВ». Результат изменения фиксируют, когда амплитуда изменения э.д.с. не превышает ±1,5 мВ/мин для всех модификаций анализаторов при использовании стандартных электродных систем.

Для выхода из режима измерения нажмите кнопку «ОТМ». Прибор вернется в состояние выбора режима работы «рН-метр-иономер».

2.2. Порядок работы с фотометром «Эксперт – 003»

ПО ДИСЦИПЛИНЕ «ХИМИЯ»

Учебное пособие

Белгород 2015г.

ТЕХНИКА БЕЗОПАСНОСТИ В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ.. 3

ХИМИЧЕСКАЯ ПОСУДА.. 10

ЛАБОРАТОРНАЯ РАБОТА №1. 15

ЛАБОРАТОРНАЯ РАБОТА № 2. 27

ЛАБОРАТОРНАЯ РАБОТА № 3. 51

ЛАБОРАТОРНАЯ РАБОТА № 4. 55

ЛАБОРАТОРНАЯ РАБОТА № 5. 62

ТЕХНИКА БЕЗОПАСНОСТИ В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ

Работа в химической лаборатории неизбежно связана с рядом опасных и вредных факторов. Для обеспечения безопасности людей необходимо соблюдать определенные правила. Неумелое или небрежное обращение с химическими реактивами и оборудованием может привести к несчастному случаю.

Химическая лаборатория оборудована специальными рабочими столами, шкафами и полками для реактивов, посуды, растворов. Для работы с ядовитыми летучими веществами имеются вытяжные шкафы. Лаборатория снабжена водопроводом и канализацией.

Мебель и оборудование располагаются так, чтобы проходы между столами и выход из лаборатории были всегда свободными для обеспечения возможности быстрой эвакуации людей в экстренных случаях.

В химической лаборатории обязательно имеются средства противопожарной безопасности, а также аптечка для оказания первой помощи.

Общие правила поведения в лаборатории

1. Лабораторные работы выполняются студентами во время, предусмотренное расписанием занятий. Категорически запрещается работать в лаборатории в неустановленное время без разрешения преподавателя.

2. В лаборатории никогда нельзя работать одному.

3. Запрещается посещение студентов, работающих в лаборатории, посторонними лицами, а также отвлечение студентов посторонними работами и разговорами.

4. В лаборатории необходимо соблюдать порядок и тишину. Шум и посторонние разговоры отвлекают внимание и могут привести к ошибкам в работе.

5. Нельзя находиться в лаборатории в верхней одежде. Следует работать обязательно в халате, застегивающемся спереди, иметь при себе полотенце. Студенты без халата к выполнению работ не допускаются .

7. Запрещается проводить какие-либо опыты, не предусмотренные программой практикума, приносить свои реактивы, выносить реактивы из лаборатории.

8. К выполнению лабораторной работы можно приступать после тщательного изучения методики и правил работы с приборами.

9. На рабочем столе должны находиться необходимые реактивы, оборудование и посуда, рабочий журнал. Поверхность стола должна быть чистой и сухой. Не следует загромождать стол посторонними предметами, ставить на него портфели, сумки и т.д.

10. Во время работы не следует спешить и суетиться. Торопливость, беспорядочность и неряшливость приводят к неудачам в работе, а иногда и к несчастным случаям. Если при выполнении работы возникают какие-либо затруднения, нужно обратиться за советом к лаборанту или преподавателю.

11. При выполнении лабораторной работы все операции необходимо выполнять над столом.

12. После окончания работы следует вымыть посуду, отключить электроприборы, выключить воду, привести в порядок рабочее место и сдать его лаборанту. Бумагу, использованные фильтры, мусор, осколки разбившейся посуды необходимо выбрасывать в мусорное ведро, ни в коем случае не в раковину. О случаях нарушения порядка (разбита посуда, испорчены реактивы и т.п.) необходимо сообщить преподавателю или лаборанту.

ХИМИЧЕСКАЯ ПОСУДА

В лаборатории используется стеклянная, фарфоровая, металлическая посуда. Наиболее часто опыты проводят в стеклянной посуде.

Стеклянная химическая посуда условно делится на три группы: посуда общего назначения, мерная посуда, специальная посуда.

Посуда общего назначения используется для самых разнообразных целей. Изготавливается она из обычного и термостойкого стекла.

Пробирки (рис. 1) служат для проведения опытов с небольшими количествами веществ. Обычная лабораторная пробирка имеет размеры 15´150 мм и емкость около 20 мл. При проведении опыта не следует заполнять пробирку более чем на 1/3 объема. Перемешивают реактивы в пробирке легким встряхиванием, постукивая по ней. Нельзя перемешивать вещества резким встряхиванием, закрыв отверстие пробирки пальцем. Нагревают жидкость в пробирке на водяной бане или на открытом пламени, закрепив ее в пробиркодержателе. При этом нагревают не дно пробирки, а сначала верхнюю часть жидкости, затем прогревают всю пробирку. Пробирку держат отверстием от себя и от работающих рядом, чтобы в случае внезапного выброса горячей жидкости она ни на кого не попала.

Химические стаканы (рис. 2) – тонкостенные сосуды цилиндрической формы. Они предназначены для выполнения различных операций – приготовления растворов, проведения некоторых химических реакций и т.д. Химические стаканы изготавливаются в соответствии с ГОСТ, емкость их бывает различной – от 50 мл до 2 л. Различаются они и по форме (высокие и низкие, с носиком и без носика).

Плоскодонные и конические колбы (рис. 3) применяются для самых различных работ (приготовление растворов, фильтрование и т.д.). Небольшие конические колбы, иначе называемые колбами Эрленмейера, применяются для титрования. Емкость плоскодонных конических колб может быть различной – от 25 мл до 5 л. Изготавливают разнообразные колбы: с узким и широким горлом, с обычным цилиндрическим горлом и с отогнутыми краями, а также со специальным пришлифованным горлом. Такие колбы герметично закрываются специальными пробками стандартных размеров. Если колба изготовлена из термостойкого стекла, на ней имеется соответствующее обозначение: ТС, матовый прямоугольник или кружок.

Круглодонные колбы (рис. 4) предназначены для проведения синтезов, могут использоваться при перегонке жидкостей. Они могут иметь одно, два, три, реже четыре горла стандартных размеров. Как правило, одно из них более широкое, остальные узкие.

Химические воронки (рис. 5) различной емкости используются для переливания жидкостей, для фильтрования. Угол воронки чаще всего составляет 60°. Хвостовая часть воронки имеет косой срез, необходимый для того, чтобы переливаемая жидкость стекала по стенке сосуда и не разбрызгивалась.

Эксикаторы (рис. 6) используются для сохранения химических веществ в сухой атмосфере. Эксикатор представляет собой толстостенный стеклянный сосуд с широкой притертой крышкой. На дно эксикатора помещают влагопоглощающее вещество, например прокаленный хлорид кальция. Сверху кладут фарфоровую решетку, на которую ставятся чашки или бюксы с веществами. Эксикатор герметично закрывается крышкой. Герметичность обеспечивается специальной смазкой, которая наносится на пришлифованные поверхности. Крышку открывают, перемещая ее в горизонтальном направлении. Эксикатор переносят, придерживая крышку.

Капельницы (рис. 7) предназначены для работы с индикаторами.

Мерная посуда применяется для измерения объемов жидкостей. Она калибрована, т.е. имеет метку, отмечающую определенный объем жидкости. Калибрование точной мерной посуды производят при температуре 20°С, что указывается на посуде. Отклонение температуры на ± 5°С не вызывает значительного изменения объема. Поэтому с мерной посудой работают при температуре, отличающейся в указанных пределах от той, при которой производилась калибровка. В случае необходимости делают соответствующий пересчет.

Если мерная посуда, кроме метки, отмечающей общий объем, имеет еще метки, которые делят общий объем на части, то такая посуда называется градуированной. При работе с градуированной посудой необходимо установить цену деления.

Мерные (измерительные) цилиндры, мензурки позволяют грубо измерить объем жидкостей. Для точного измерения предназначены мерные колбы, бюретки, пипетки.

Для правильного измерения объема жидкости мерную посуду наполняют ею так, чтобы мениск касался метки, при этом глаз должен находиться на уровне метки. Уровень смачивающих стекло прозрачных жидкостей (воды, водных растворов, спирта) устанавливают по нижнему краю вогнутого мениска, а для непрозрачных и темноокрашенных – по верхнему краю.

Мерные цилиндры и мензурки (рис. 8) используют при приготовлении растворов. Мензурки в отличие от мерных цилиндров имеют коническую форму. Емкость мерных цилиндров от 10 мл до 2 л, мензурок – от 50 до 500 мл. Измерение объемов жидкостей при помощи мензурок дает меньшую точность.

Мерные колбы (рис. 9) предназначены для приготовления растворов точной концентрации. Это мерная посуда на наливание, они имеют одну метку на длинном узком горлышке. Мерные колбы бывают различной емкости – от 50 мл до 2 л. Они бывают с притертой пробкой и без нее.

Пипетки и бюретки (рис. 10)– это мерная посуда, используемая при проведении химического анализа. Пипетки предназначены для отбора точных объемов анализируемых растворов. Бюретки используются для титрования (см. работу 1).

Фарфоровая химическая посуда также довольно часто используется при выполнении химического эксперимента.

Выпарная (выпарительная) чашка (рис. 11)– круглодонная тонкостенная емкость с носиком или без. Применяется для упаривания и выпаривания растворов.

Ступка (рис. 12) – толстостенная фарфоровая посуда.Нижняя внешняя поверхность ступки плоская, а внутренняя – сферическая. Ступки используют для измельчения и растирания твердых веществ с помощью пестика .

Тигли (рис. 13) применяются для прокаливания веществ. Они бывают различной емкости от 2 мл до 100 мл.

В лаборатории также применяются фарфоровые стаканы, кружки и т.д.

Рис. 1. Пробирки Рис. 2. Химические стаканы
Рис.3. Плоскодонные конические колбы Рис. 4. Круглодонная колба
Рис. 5. Воронка Рис. 6. Эксикатор Рис. 7. Капельницы
Рис. 8. Мерный цилиндр Рис. 9. Мерные колбы
Рис. 10. Пипетки: Мора(а), градуированные (б) и бюретка (в) Рис. 12. Ступка и пестик
Рис. 11. Выпарительная чашка
Рис. 13. Тигель

ЛАБОРАТОРНАЯ РАБОТА №1

Общие понятия

Раствор гомогенная (однородная) система, состоящая из двух или более компонентов, относительные количества которых могут изменяться в широких пределах . В истинном растворе растворенные вещества равномерно распределены в виде молекул или ионов в растворителе. Обычно растворителем считают тот компонент, который в чистом виде существует в том же агрегатном состоянии, что и полученный раствор. Например, в случае раствора соли в воде растворителем является вода. Если оба компонента до образования раствора находились в одинаковом агрегатном состоянии, например жидком (спирт и вода), то растворителем чаще всего считается компонент, находящийся в растворе в относительно большем количестве. Наибольшее практическое значение имеют жидкие растворы.

Растворы электролитов – это растворы диссоциирующих на ионы солей, кислот и оснований. В них растворенные вещества присутствуют в виде молекул и ионов (слабые электролиты) или только в виде ионов (сильные электролиты). Электрическая проводимость этих растворов выше, чем растворителя.

Растворы неэлектролитов – это растворы веществ, не диссоциирующих в растворителе. Они практически не проводят электрический ток. Неэлектролиты в растворе диспергированы до молекул.

Раствор, находящийся при данных условиях в равновесии с растворяемым веществом, называется насыщенным раствором. В нем содержится максимально возможное количество растворенного вещества при заданной температуре.

Раствор, в котором при данных условиях предел растворимости не достигнут, называется ненасыщенным. Концентрация растворенного вещества в нем меньше, чем в насыщенном растворе.

Раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе, называется пересыщенным. Такие системы являются метастабильными, т.е. при отсутствии внешних воздействий могут достаточно долгое время оставаться без изменений, но при введении, например, маленького кристалла растворенного вещества весь избыток его в растворе быстро выпадает в осадок, раствор переходит в устойчивое состояние и становится насыщенным.

Титриметрический анализ

3.1. Сущность титриметрического метода анализа

Титриметрия (титриметрический анализ) – это количественный химический метод анализа, основанный на точном измерении объема стандартного раствора (титранта), вступающего в реакцию с определяемым веществом.

Стандартным называется раствор реагента с точно известной концентрацией. Стандартный раствор добавляется из бюретки по каплям к определенному объему анализируемого раствора. Этот процесс называется титрованием.

Состояние системы, когда количество добавляемого титранта эквивалентно количеству определяемого вещества, называется точкой эквивалентности , или теоретической точкой конца титрования . Для фиксирования точки эквивалентности используют различные индикаторы или инструментальные методы. Резкое изменение окраски индикатора соответствует конечной точке титрования, которая, строго говоря, не всегда совпадает с точкой эквивалентности.

Титриметрия как метод анализа имеет ряд достоинств. Во-первых, этовысокая скорость и точность анализа, а также применимость для определения различных количеств веществ. Во-вторых,этим методом в одном и том же растворе часто можно определять одновременно несколько веществ. Еще одно достоинство –возможность автоматизировать титрование.

В титриметрии применяются реакции, удовлетворяющие следующим требованиям.

· Реакция должна протекать быстро.

· Реакция должна быть стехиометрична и протекать строго по уравнению.

· Она должна протекать количественно, почти до конца, т.е. константа равновесия реакции К р ³ 10 8 .

· Основной реакции не должны мешать побочные реакции и посторонние вещества.

· Должна четко фиксироваться точка эквивалентности с помощью подходящего индикатора.

Вычисления в титриметрии

В основе расчетов в титриметрическом анализе лежит закон эквивалентов : вещества взаимодействуют друг с другом в эквивалентных количествах . В случае реакций между растворами (титруемого вещества и титранта) его записывают следующим образом

,

где С Н1 и С Н2 – молярные концентрации эквивалента реагирующих веществ (нормальные концентрации),

V 1 и V 2 – объемы растворов.

По известным значениям объемов растворов и концентрации титранта рассчитывают молярную концентрацию эквивалента для исследуемого раствора (нормальность), а далее при необходимости можно найти молярную концентрацию, содержание определяемого вещества в г/л, массу определяемого вещества в образце и т.д.

При серийных анализах удобно пользоваться титром стандартного раствора по определяемому веществу.

Например, T(KMnO 4 /Fe 2+) = 0.005585 г/мл означает, что одним миллилитром стандартного раствора KMnO 4 можно оттитровать 0,005585 г ионов Fe 2+ .

Цель работы.

1. Научиться готовить растворы с заданной массовой долей растворенного вещества (процентной концентрацией) из твердого вещества и разбавлением.

2. Освоить метод кислотно-основного титрования.

Реактивы.

  • Соль (указывает преподаватель).
  • КОН или NaOH.
  • Стандартный 0,1 н раствор тетрабората натрия.
  • 1%-ный водный раствор метилового оранжевого.
  • Раствор соляной кислоты (титр которой устанавливается).

Оборудование и посуда.

· Бюретки.

· Стаканы на 150-200 мл.

· Набор ареометров.

· Цилиндры.

· Пипетки на 10, 20, 25 мл.

· Колбы конические для титрования на 100 или 250 мл.

Выполнение работы.

Опыт №1.Приготовление раствора заданной процентной концентрации.

1.1. Приготовление раствора из твердого вещества и воды.

ЛАБОРАТОРНАЯ РАБОТА № 2

Биогенные s- и р-элементы

К s-элементам относятся первые два элемента каждого периода. Электронная формула внешнего слоя ns 1 –ns 2 . К ним относятся элементы главной подгруппы I группы (IА группы) – водород, щелочные металлы (Li, Na, K, Rb, Cs, Fr), а также элементы главной подгруппы II группы (IIA группы) – Be, Mg, Ca, Sr, Ba, Ra, и элемент VIIIА благородный газ гелий Не. Некоторые из них относятся к макроэлементам (H, Na, K, Ca, Mg), другие – к микроэлементам (например, Sr, Ba, Ra). Первые пять элементов являются жизненно необходимыми (незаменимыми), биогенными элементами. Остальные s-элементы (Li, Rb, Cs, Fr, Be, Sr, Ba, Ra) являются примесными элементами.

К р-элементам относятся последние 6 элементов II–VI периодов (VII период не завершен). Электронная формула внешнего слоя этих элементов np 1 –np 6 . Это элементы главных подгрупп III–VIII групп (кроме гелия, он s-элемент). Из них к макроэлементам относятся O, C, N, P, S, Cl, они же являются жизненно необходимыми биогенными элементами. Большинство р-элементов относятся к примесным микроэлементам. Из микроэлементов только йод (I) относится к числу незаменимых биогенных элементов. Фтор (F) также можно считать элементом, необходимым для нормального функционирования живых организмов. Некоторые исследователи относят и селен (Se) к жизненно необходимым элементам.

Группа IA (водород)

Пероксид водорода – это соединение водорода, элемента IА группы, который относится к s-семейству. Пероксид водорода является важным побочным продуктом метаболизма. Обычно в митохондриях идет восстановление О 2 до Н 2 О:

О 2 0 + 4 Н + + 4е = 2Н 2 О -2 .

При неполном восстановлении кислорода образуется пероксид водорода:

О 2 0 + 2Н + + 2е = Н 2 О 2 -1 .

Пероксид водорода, как промежуточный продукт восстановления кислорода, очень токсичен для клетки. Токсичность связана с тем, что Н 2 О 2 взаимодействует с липидным слоем клеточных мембран и выводит их из строя.

Аэробные клетки могут защитить себя от вредного действия пероксида водорода с помощью фермента каталазы, под действием которой Н 2 О 2 превращается в воду и кислород:

2Н 2 О 2 2Н 2 О + О 2 .

Освободившийся кислород принимает участие в дальнейших процессах биологического окисления.

Аналогичное разложение пероксида водорода можно осуществить в лабораторных условиях под действием MnO 2 в качестве катализатора.

2Н 2 О 2 2Н 2 О + О 2 .

В медицинской практике пероксид водорода применяют в основном как наружное бактерицидное средство. Действие Н 2 О 2 основано на окислительной способности пероксида водорода и безвредности продукта его восстановления – воды. При обработке ран выделяющийся кислород играет двоякую роль. Во-первых, он оказывает противомикробное, дезодорирующее и депигментирующее действие, убивая микробные тела. Во-вторых, образует пену, способствуя переходу частиц тканевого распада во взвешенное состояние и очищению ран.

В качестве фармакопейного препарата используется 3%-ный водный раствор пероксида водорода. 6%-ный раствор Н 2 О 2 применяют для обесцвечивания волос. В виде 30%-ного раствора Н 2 О 2 применяют при лечении бородавчатых форм красного плоского лишая и для удаления юношеских бородавок.

Группа IA и IIА

Металлы IA и IIA группы относятся к s-семейству.

Гидрокарбонат натрия NaHCO 3 используют при различных заболеваниях, сопровождающихся повышенной кислотностью - ацидозом (диабет и др.). Механизм снижения кислотности заключается во взаимодействии NaHCO 3 с кислыми продуктами. При этом образуются натриевые соли органических кислот, которые в значительной мере выводятся с мочой, и углекислый газ, покидающий организм с выдыхаемым воздухом:

NaHCO 3 (р) + RCOOH(р) ®RCOONa(р) + Н 2 О(ж) + СО 2 (г)

Используют NaHCO 3 и при повышенной кислотности желудочного сока, язвенной болезни желудка и двенадцатиперстной кишки. При приеме NaHCO 3 протекает реакция нейтрализации избыточной соляной кислоты:

NaHCO 3 (р) + HCl(р) = NaCl(р) + Н 2 О(ж) + СО 2 (г)

желудоч. сок

Следует иметь в виду, что применение NaHCO 3 вызывает ряд побочных эффектов. Выделяющийся при реакции диоксид углерода раздражает рецепторы слизистой оболочки желудка и вызывает вторичное усиление секреции, кроме того, он может способствовать перфорации стенки желудка при язвенной болезни. Слишком большая доза NaHCO 3 в результате гидролиза приводит к алкалозу , что не менее вредно, чем ацидоз.

Среди оксидов элементов IIА-группы в качестве лекарственного препарата применяют оксид магния MgO. Основные свойства оксида магния и его нерастворимость в воде обуславливают его применение в качестве антацидного средства при повышенной кислотности желудочного сока:

MgO(тв.) + 2HCl(желудоч. сок) = MgCl 2 (р) + Н 2 О(ж)

Оксид магния имеет преимущество перед гидрокарбонатом натрия, так как при взаимодействии MgO с кислотой желудочного сока не происходит выделение диоксида углерода. Поэтому при действии оксида магния не наблюдается гиперсекреции. Образующийся при реакции хлорид магния переходит в кишечник, оказывает легкий послабляющий эффект, обусловленный осмотическим действием.

Антацидным и адсорбирующим действием обладает карбонат кальция СаСО 3 . Его назначают внутрь при повышенной кислотности желудка, так как он нейтрализует соляную кислоту:

СаСО 3 (тв.) + 2HCl (желудоч. сок) = CaCl 2 (р) + Н 2 О(ж) + СО 2 (г).

Жесткость воды

Растворимые соли Са и Mg обуславливают важное свойство природной воды, называемое жесткостью (суммарное содержание солей кальция и магния). Определение жесткости воды имеет большое практическое значение и широкое применение в лабораторной практике различных производств. При стирке белья жесткая вода ухудшает качество тканей и требует повышенной затраты мыла, которое расходуется на связывание катионов Са 2+ и Mg 2+ :

2С 17 Н 35 СОО – + Са 2+ = (С 17 Н 35 СОО) 2 Са¯

2С 17 Н 35 СОО – + Mg 2+ = (С 17 Н 35 СОО) 2 Mg¯.

Пена образуется лишь после полного осаждения этих катионов. Правда, некоторые синтетические моющие средства хорошо моют и в жесткой воде, так как их кальциевые и магниевые соли легко растворяются. В жесткой воде плохо развариваются овощи. Очень плохо заваривается чай, и вкус его теряется. В то же время в санитарно-гигиеническом отношении эти катионы не представляют опасности, хотя при большом содержании катионов магния Mg 2+ (как в море или океане) вода горьковата на вкус и оказывает послабляющее действие на кишечник человека. Однако использование жесткой воды в качестве питьевой способствует возникновению мочекаменной и желчекаменной болезней (образованию камней).

Различают жесткость временную (или устранимую) и постоянную . Временная жесткость обусловлена присутствием в воде гидрокарбонатов Ca(HCO 3) 2 , реже Mg(HCO 3) 2 и иногда Fe(HCO 3) 2 . Постоянная жесткость обусловлена присутствием других растворимых солей этих металлов (хлоридов, сульфатов и др.).

При кипячении воды гидрокарбонаты разлагаются с образованием труднорастворимых соединений, выпадающих в осадок, и жесткость уменьшается.

Ca(HCO 3) 2 ® CaCO 3 ¯ + H 2 O + CO 2 ­

Ca 2+ + 2HCO 3 - ® CaCO 3 ¯ + H 2 O + CO 2 ­

2Mg(HCO 3) 2 ® (MgOH) 2 CO 3 ¯ + H 2 O + 3CO 2 ­

2Mg 2+ + 2HCO 3 2- ® (MgOH) 2 CO 3 ¯ + H 2 O + 3CO 2 ­ .

Сохраняющаяся после кипячения воды жесткость, называется постоянной (некарбонатной) .

В соответствии с ГОСТ 6055-86 по значению общей жесткости (ммоль/л) различают воду: очень мягкую <1,5, мягкую 1,5–3,0, средней жесткости 3,0–6,0, жесткую 6,0–9,0, очень жесткую > 9,0.

Жесткость воды хозяйственно-питьевых водопроводов не должна превышать 7 ммоль/л.

Для определения жесткости воды применяют титриметрический метод (см. лабораторную работу №1).

В даннойработе методом кислотно-основного титрования (метод нейтрализации) определяется временная (гидрокарбонатная) жесткость воды. Гидрокарбонаты кальция и магния титруют соляной кислотой в присутствии индикатора.

Ca(HCO 3) 2 + 2НCl®CaCl 2 + 2H 2 O +2CO 2

HCO 3 – + Н + ®H 2 O +CO 2

Группа IIIA (алюминий)

По содержанию в организме человека алюминий относится к примесным микроэлементам (10 –5 %). Известно, что алюминий влияет на развитие эпителиальной и соединительной тканей, на регенерацию костной ткани, на обмен фосфора. Катион Al 3+ способен замещать ионы Ca 2+ и Mg 2+ , влияя тем самым на протекание ферментативных процессов. Избыток алюминия в организме тормозит синтез гемоглобина, так как благодаря довольно высокой способности к комплексообразованию ионы алюминия блокируют активные центры ферментов, участвующих в кроветворении.

Алюминий – амфотерный металл, растворяется в растворах кислот и в щелочах. Амфотерными свойствами обладают оксид (Al 2 O 3) и гидроксид алюминия (Al(OH) 3).

Соли алюминия и кислородсодержащих кислот растворимы в воде, за исключением фосфата алюминия AlPO 4 . Это следует учитывать при назначении препаратов алюминия, в частности гидроксида алюминия при повышенной кислотности желудка. В желудке гидроксид алюминия нейтрализует соляную кислоту

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

Al(OH) 3 + 3H + = Al 3+ + 3H 2 O

Перешедшие в раствор ионы алюминия в кишечнике переходят в малорастворимую форму – фосфат алюминия, который выводится из организма. Таким образом, в присутствии ионов алюминия уменьшается усвоение фосфора.

В медицинской практике также находят применение алюмокалиевые квасцы (KAl(SO 4) 2 ∙12H 2 O) и жженые квасцы (KAl(SO 4) 2). Эти соединения используются для наружного применения для полосканий, промываний, примочек при воспалительных заболеваниях кожи и слизистых, как кровоостанавливающее средство при порезах. Фармакологическое действие солей алюминия основано на том, что ионы Al 3+ образуют с белками комплексы, выпадающие в виде гелей, что приводит к гибели микробных клеток.

Группа VA (азот)

Опыт 6. Получение и свойства аммиака

Азот (N) – элемент VА группы (р-элемент). Из соединений азота, в которых он проявляет степень окисления –3, наибольший интерес для медиков и биологов представляет аммиак NH 3 и его производные – соли аммония и аминокислоты. Аммиак NH 3 в организме человека является одним из продуктов метаболизма аминокислот и белков.

Причина токсического действия аммиака на мозг до конца не выяснена. В крови при рН = 7,4 аммиак почти полностью находится в виде ионов аммония. Ионы NH 4 + , несмотря на то, что они в крови находятся в большом избытке, не могут проникать через клеточные мембраны, в то время как нейтральные молекулы NH 3 легко проходят и могут воздействовать на мозг.

NH 3 – бесцветный газ с резким запахом, очень хорошо растворим в воде: в 1 объеме воды при 20°С растворяется около 700 объемов аммиака (растворимость 31 моль/л). В концентрированном водном растворе массовая доля аммиака составляет 25%. В медицинской практике применяют 10%-ный раствор аммиака (нашатырный спирт) для выведения из обморочного состояния. При вдыхании аммиак оказывает возбуждающее влияние на дыхательный центр. При больших дозах наступает удушье.

Группа VIA (кислород)

Кислород – важнейший биогенный элемент, находится в VIА группе (р-элемент).

В атмосфере Земли содержится около 21% кислорода (по объему). В промышленности кислород получают из жидкого воздуха путем ректификации – дробной перегонки, основанной на различии температур кипения кислорода (–183°С) и азота (–195,8°С). В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением 15 МПа. Лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества О 2 можно получать взаимодействием раствора KMnO 4 с подкисленным раствором Н 2 О 2 (см. опыт 4.2 в работе 8) или термическим разложением некоторых кислородсодержащих веществ, например, перманганата калия:

2KMnO 4 = K 2 MnO 4 + MnO 2 + O 2 ­.

Велика биологическая роль кислорода. Элемент кислород входит в состав всех жизненно важных органических веществ – белков, жиров, углеводов. Без О 2 невозможны чрезвычайно важные жизненные процессы: дыхание, окисление аминокислот, жиров, углеводов. Только немногие растения, называемые анаэробными ,могут обходиться без кислорода. За сутки человек фактически использует около 0,1 м 3 кислорода. У высших животных О 2 проникает в кровь, соединяется с гемоглобином, образуя оксигемоглобин, который поступает в капилляры различных органов. Здесь О 2 отщепляется от гемоглобина и через стенки капилляров диффундирует в ткани. В тканях кислород расходуется на окисление различных веществ. Эти реакции в конечном итоге приводят к образованию углекислого газа, воды и созданию запаса энергии.

Регенерация кислорода осуществляется в растениях в результате фотосинтеза.

Кислород используют в медицине при затрудненном дыхании. В последние годы при лечении газовой гангрены и ряда других заболеваний, при которых накапливаются микробы в омертвевших тканях, применяют гипербарическуюоксигенацию, т.е. помещают больных в барокамеры с повышенным давлением кислорода в воздухе. При этом улучшается снабжение тканей кислородом, и во многих случаях такой способ лечения дает хорошие результаты.

Группа VIIA (йод)

Йод (I) находится в VIIА группе, относится к р-элементам. Он относится к числу незаменимых биогенных элементов, и его соединения играют важную роль в процессах обмена веществ. Имеются данные, что йод влияет на синтез некоторых белков, жиров и гормонов. В организме человека содержится около 25 мг йода, из них больше половины находится в щитовидной железе, причем в связанном состоянии – в виде гормонов – и только около 1% его находится в виде иодид-иона. Щитовидная железа секретирует иод-содержащие гормоны тироксин и трииодтиронин.

Пониженная активность щитовидной железы (гипотиреоз) может быть связана с уменьшением ее способности накапливать иодид-ионы, а также с недостатком в пище иода (эндемический зоб).

При эндемическом зобе назначают препараты иода: KJ или NaJ. В районах, где имеется дефицит иода, для профилактики эндемического зоба добавляют к поваренной соли NaJ или KJ (1-2,5 г на 100 кг).

При повышенной активности щитовидной железы (гипертиреоз) вследствие избыточного синтеза тиреоидных гормонов наблюдается ненормально увеличенная скорость метаболических процессов.

KJ применяют и при гипотиреозе (эндемический зоб), и при гипертиреозе. В первом случае иодид-ионы используют для синтеза гормонов, во втором случае иодид-ион тормозит иодирование тирозина иодом. При неэффективности указанных препаратов для лечения гипертиреоза применяют препарат радиоактивного иодаJ-131, излучение которого разрушает фолликулы щитовидной железы и уменьшает избыточный синтез гормонов.

NaJ и KJ используют также как отхаркивающее средство при воспалительных заболеваниях дыхательных путей.

Иод применяют в медицине в виде раствора в этиловом спирте (массовая доля иода 3, 5 или 10%), который является превосходным антисептическим и кровоостанавливающим средством. Кроме того, йод входит в состав ряда фармацевтических препаратов.

D-элементы

По содержанию в организме человека d-элементы относятся к микроэлементам (10 –3 масс. % и ниже). Среди них есть жизненно необходимые (незаменимые) элементы – это Mn, Cu, Co, Fe, Zn, Mo, V (по классификации В.В. Ковальского). Другие, такие как, Cd, Cr, Ni, Ag, Hg и другие, относятся к примесным элементам, биологическая роль которых мало выяснена или неизвестна. Шесть d-элементов (Fe, Zn, Cu, Mn, Mo, Co) наряду с четырьмя s-элементами (Ca, K, Na, Mg) относятся к металлам жизни.

У d-элементов сильно выражена способность к комплексообразованию (слово «комплексные» означает сложные, составные). Комплексные соединения - ярко окрашенные солеобразные вещества были известны химикам еще в XVIII веке. Одними из первых были открыты комплексные соли железа и кобальта. Многие биокатализаторы – ферменты также являются комплексными соединениями. Изучением их занимается бионеорганическая химия.

Рассмотрим образование комплексной соли на конкретном примере. Если к голубому водному раствору CuSO 4 прибавить раствор аммиакаNH 3 , то при этом раствор приобретает красивый ярко-синий цвет. Происходит реакция образования комплексной соли SO 4:

CuSO 4 + 4NH 3 → CuSO 4 ×4NH 3

Строение комплексных соединений объясняет теория А. Вернера. В молекулах комплексных соединений выделяют центральный атом или ион (М ) и непосредственно связанные с ним молекулы (или ионы), называемые лигандами (L ), в количестве n .

Центральный ион и окружающие его лиганды образуют внутреннюю сферу комплекса . Внутренняя сфера связана электростатическими силами притяжения с внешней сферой, которая состоит из m частиц Х (молекулы или ионы). Общая запись формулы комплексного соединения имеет вид X m .

Центральный атом координирует лиганды, геометрически правильно располагая их в пространстве. Поэтому комплексные соединения называют также координационными. Число лигандовn называется координационным числом, а внутренняя сфера – координационной.

В соответствии с этим формулу комплексного соединения меди с аммиаком можно записать в виде SO 4 , где ион меди Cu 2+ – центральный ион; молекулы NH 3 – лиганды; 4 – координационное число; сульфат анион SO 4 2- – внешняя сфера. Называется данная соль сульфат тетраамминмеди (II).

Комплексные соли диссоциируют на внутреннюю и внешнюю сферу по типу сильных электролитов:

SO 4 « 2+ + SO 4 2- .

Образующийся комплексный ион 2+ диссоциирует как очень слабый электролит:

2+ «Cu 2+ + 4NH 3 .

Концентрация образующихся ионов Cu 2+ очень мала.

Константа равновесия этого процесса называется константой нестойкости комплексного иона (комплекса).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

[Введите текст]

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Национальный минерально-сырьевой университет «Горный»

Реферат на тему «Техника безопасности в химической лаборатории»

Санкт-Петербург

Введение

При работе в химической лаборатории соблюдение мер безопасности является главным приоритетом.

В химических лабораториях часто проводятся работы под давлением, в вакууме, при высоких температурах, а также используются вещества, которые могут оказывать вредное воздействие на организм человека или обладать пожароопасными и взрывоопасными свойствами.

Для выполнения этих работ необходимо иметь специальные знания и соблюдать необходимые меры безопасности.

В данном реферате рассказывается, как соблюдать меры безопасности при работе в химической лаборатории.

1. Общие положения

Работать в химической лаборатории разрешается людям, прошедшим инструктаж по технике безопасности и получившим допуск к самостоятельной работе.

За 30 минут до начала проведения работы необходимо включить вытяжную вентиляцию.

Работать необходимо в спецодежде (х/б халаты, прорезиненные фартуки), спецобуви, имея при себе необходимые средства индивидуальной защиты (защитные очки, резиновые перчатки, респираторы).

Для безопасного ведения работ необходимо ознакомиться с физико-химическими и токсикологическими свойствами применяемых веществ.

Хранить и принимать пищу на рабочем месте в химической лаборатории запрещается, а также применять лабораторную посуду для личного пользования недопустимо.

Работы, сопровождающиеся выделением вредных, пожароопасных и взрывоопасных веществ, а также с образованием пыли или дыма, нужно проводить в вытяжном шкафу.

При нагревании жидкости в пробирке направлять её отверстие в сторону от себя и находящихся рядом лиц.

Перед проведением работ с применением вакуума, испытать установку на герметичность. Собирая установку, необходимо смазать все шлифы вакуумной смазкой, проверить отсутствие трещин и сосколов на приборах.

Запрещается оставлять без присмотра включенные нагревательные приборы и работающее лабораторное оборудование.

Следиить за исправностью заземления электрооборудования и электроинструмента, а также оборудования и механизмов, которые могут оказаться под напряжением.

О всех неисправностях электрооборудования и электросети сообщать дежурному электрику. Ремонтировать электрооборудование самостоятельно запрещается.

2. Правила пожарной безопасности в лаборатории

Все помещения лаборатории должны соответствовать требованиям пожарной безопасности по ГОСТ и иметь средства пожаротушения.

Лаборатория должна быть оснащена пожарными кранами (не менее одного на этаж) с пожарными рукавами. В каждом рабочем помещении должны быть в наличии огнетушители и песок, а в помещениях с огнеопасными и легковоспламеняющимися веществами - дополнительные средства пожаротушения.

В помещении лаборатории на видном месте должен быть вывешен план эвакуации сотрудников в случае возникновения пожара.

Распоряжением по лаборатории из числа сотрудников назначается группа (3 - 5 человек), которая организует все противопожарные мероприятия, получив инструктаж местной пожарной команды.

Все сотрудники лаборатории должны быть обучены правилам обращения с огне- и взрывоопасными веществами, газовыми приборами, а также должны уметь обращаться с противогазом, огнетушителем и другими средствами пожаротушения, имеющимися в лаборатории.

В помещениях лаборатории и в непосредственной близости от них (в коридорах, под лестницами) запрещается хранить горючие материалы и устанавливать предметы, загромождающие проходы и доступ к средствам пожаротушения.

Курить в помещениях лаборатории строго запрещается!

Без разрешения начальника лаборатории и лица, ответственного за противопожарные мероприятия, запрещается установка лабораторных и нагревательных приборов, пуск их в эксплуатацию, переделка электропроводки.

Все нагревательные приборы должны быть установлены на термоизолирующих подставках.

Запрещается эксплуатация неисправных лабораторных и нагревательных приборов.

После окончания работы необходимо отключить электроэнергию, газ и воду во всех помещениях.

Каждый сотрудник лаборатории, заметивший пожар, задымление или другие признаки пожара обязан:

Немедленно вызвать пожарную часть по телефону;

Принять меры по ограничению распространения огня и ликвидации пожара;

Поставить в известность начальника лаборатории, который в свою очередь должен известить сотрудников, принять меры к их эвакуации и ликвидации пожара.

3. Правила электробезопасности в лаборатории

Все помещения лаборатории должны соответствовать требованиям электробезопасности при работе с электроустановками по ГОСТ.

Все электрооборудование с напряжением свыше 36 В, а также оборудование и механизмы, которые могут оказаться под напряжением, должны быть надежно заземлены.

Для отключения электросетей на вводах должны быть рубильники или другие доступные устройства. Отключение всей сети, за исключением дежурного освещения, производится общим рубильником.

В целях предотвращения электротравматизма запрещается:

Работать на неисправных электрических приборах и установках;

Перегружать электросеть;

Переносить и оставлять без надзора включенные электроприборы;

Работать вблизи открытых частей электроустановок, прикасаться к ним;

Загромождать подходы к электрическим устройствам.

О всех обнаруженных дефектах в изоляции проводов, неисправности рубильников, штепсельных вилок, розеток, а также заземления и ограждений следует немедленно сообщить электрику.

В случае перерыва в подаче электроэнергии электроприборы должны быть немедленно выключены.

Запрещается использование в пределах одного рабочего места электроприборов класса "0" и заземленного электрооборудования.

Категорически запрещается прикасаться к корпусу поврежденного прибора или токоведущим частям с нарушенной изоляцией и одновременно к заземленному оборудованию (другой прибор с исправным заземлением, водопроводные трубы, отопительные батареи), либо прикасаться к поврежденному прибору, стоя на влажном полу.

При поражении электрическим током необходимо как можно быстрее освободить пострадавшего от действия электрического тока, отключив электроприбор, которого касается пострадавший. Отключение производится с помощью отключателя или рубильника.

При невозможности быстрого отключения электроприбора необходимо освободить пострадавшего от токоведущих частей деревянным или другим не проводящим ток предметом источник поражения.

Во всех случаях поражения электрическим током необходимо вызвать врача.

4. Хранение химических реактивов в лаборатории

В рабочих помещениях допускается хранить нелетучие, непожароопасные и малотоксичные твердые вещества и водные растворы, разбавленные кислоты и щелочи, в количествах, необходимых для анализов.

Концентрированные кислоты в объеме не более 2 куб. дм хранятся в стеклянной посуде с притертыми стеклянными крышками или пластмассовыми пробками в эксикаторе или стеклянной емкости с крышкой в вытяжном шкафу. Для лучшей герметичности надевают резиновые колпачки.

Концентрированные растворы щелочей хранят в вытяжном шкафу, отдельно от кислот, в полиэтиленовой таре. Вместе с щелочами хранится аммиак.

Хранение легковоспламеняющихся жидкостей (ЛВЖ) допускается в толстостенных, снабженных герметичными пробками бутылях, вместимостью не более 1 куб. дм, особо опасные ЛВЖ - в объеме не более суточной потребности. Бутыли с ЛВЖ помещают в специальные металлические ящики вдали от источников тепла и окислителей (хлоратов, нитратов, азотной кислоты, перекиси водорода, перманганатов).

5. Помещения лаборатории

Химическая лаборатория должна соответствовать санитарным нормам СНиП 535-81 и иметь следующие изолированные помещения:

1. Аналитический зал - помещение для выполнения работ по подготовке проб к анализу и его проведения. Помещение должно быть оборудовано вытяжной вентиляцией, водопроводом, раковиной и канализацией. Окраска стен масляная или клеевая, полы - линолеум.

2. Весовая - комната для размещения аналитических и технических весов. В комнате должны поддерживаться постоянные температура и влажность. Стены - капитальные, исключающие вибрации пола, стен и подставок.

3. Гидробиологическая - специально оборудованное помещение для гидробиологического и токсикологического анализа.

4. Дистилляторная - изолированное помещение для установки оборудования для получения дистиллированной, бидистиллированной и деионизированной воды. Помещение должно быть оборудовано водопроводом и канализацией, стены облицованы кафельной плиткой, полы - линолеум.

5. Приборная - помещение для лабораторных приборов и выполнения измерений. Оборудование помещения должно соответствовать требованиям эксплуатации установленных в нем приборов.

6. Ртутная - комната, предназначенная для работ с ртутью, ее соединениями и приборами с ртутным заполнением. Оборудуется в соответствии с правилами эксплуатации помещений, предназначенных для проведения работ с ртутью.

7. Термическая - помещение для проведения работ, связанных с озолением, сжиганием, прокаливанием, сплавлением, оборудованное муфельными печами, вытяжными и сушильными шкафами. Стены должны быть облицованы керамической плиткой, полы - линолеум.

8. Моечная - помещение для мойки лабораторной посуды с наличием горячей и холодной воды и канализации из кислотоустойчивого материала. Моечная должна быть оборудована специальными моечными столами, один из которых с вытяжным шкафом для удаления вредных, сильно пахнущих веществ и промывания посуды кислотами и хромовой смесью.

9. Инженерная - комната для обработки результатов анализов и хранения документации.

10. Складские помещения - не менее двух изолированных сухих помещений для хранения запаса химических реактивов, материалов и инвентаря, оборудованные в соответствии с правилами их хранения и складирования.

О несчастном случае пострадавший или очевидец обязан немедленно поставить в известность начальника лаборатории, который должен организовать первую помощь пострадавшему и вызвать врача.

При работе в химической лаборатории наиболее вероятны следующие виды повреждений:

Отравления;

Ранения;

лаборатория ожог помощь

6. ПМП

При ранениях (порезах) необходимо в первую очередь удалить из раны осколки, остановить кровотечение, промыть рану 2%-ным раствором перманганата калия или спиртом и забинтовать. В случае загрязнения раны ее следует обработать пероксидом водорода. При обильном кровотечении из раны на конечности необходимо выше раны наложить давящую повязку, кровотечение из ран на других частях тела останавливают тугим перевязыванием раны стерильной марлей. При сильном кровотечении необходимо вызвать врача.

Ожоги делятся на термические и химические.

Причиной термических ожогов могут быть прикосновение незащищенными руками к раскаленным или сильно нагретым предметам лабораторного оборудования, воспламенение легковоспламеняющихся или горючих жидкостей.

Химические ожоги возникают от действия на кожу различных химических веществ, главным образом кислот и щелочей.

Таблица 1 - ПМП при ожогах

Первой степени (краснота)

Обожженное место присыпать двууглекислым натрием, крахмалом или тальком. Наложить вату, смоченную этиловым спиртом. Повторять смачивание.

Второй степени (пузыри)

Обработать 3 - 5%-ным раствором марганцовокислого калия, соды или 5%-ным раствором таннина. Смачивание этиловым спиртом.

Третьей степени (разрушение тканей)

Покрыть рану стерильной повязкой, срочно вызвать врача.

Ожоги глаз

Промыть глаза большим количеством проточной воды. При ожоге кислотами промывание производить 3%-ным раствором бикарбоната натрия, при ожоге щелочами - 2%-ным раствором борной.

Кислотами

Промыть ожог большим количеством воды, затем хлороформом, 5%-ным раствором бикарбоната натрия или 2%-ным раствором соды.

Щелочами

Промыть обильно водой, затем 2%-ным раствором уксусной кислоты.

Быстро смыть несколькими порциями этилового спирта, смазать пораженное место мазью от ожогов.

Размещено на Allbest.ru

Подобные документы

    Средства индивидуальной защиты при работе в химической лаборатории. Правила техники безопасности при работе в лаборатории кафедры агрохимии МСХА имени К.А. Тимирязева. Мероприятия по улучшению условий труда.

    реферат , добавлен 10.03.2002

    Особенности аварий и катастроф на пожаро- и взрывоопасных объектах. Правила пожарной безопасности. Опасность пожаров в административных зданиях. Средства индивидуальной защиты от оружия массового поражения. Первая медицинская помощь при травмах и ожогах.

    контрольная работа , добавлен 14.02.2012

    Анализ условий труда в лаборатории, где проводилась разработка манипулятора мобильного робота (параметры освещенности, уровня шума). Правила электробезопасности. Производственная санитария и гигиена труда. Меры по обеспечению пожарной безопасности.

    контрольная работа , добавлен 06.01.2011

    Анализ условий труда в лаборатории, возможные вредные факторы в системе "человек–машина–среда". Обеспечение электробезопасности в рассматриваемом помещении. Расчет заземления нулевого провода. Производственная санитария, гигиена и пожарная безопасность.

    контрольная работа , добавлен 30.01.2011

    Причины возникновения, степени и основные признаки химических ожогов. Особенности химических ожогов глаз, пищевода и желудка. Правила работы с кислотами и щелочами. Первая помощь при получении химического ожога. Меры предупреждения химических ожогов.

    контрольная работа , добавлен 14.05.2015

    Вид и тяжесть травм, их зависимость от особенностей поражающих факторов, степени интенсивности, времени действия. Первая медицинская помощь при массовых поражениях. Классификация ожогов, способы отравляющего воздействия аварийно химически опасных веществ.

    реферат , добавлен 10.02.2010

    Идентификация и оценка опасных и вредных производственных факторов, воздействующих на работников лаборатории вибродиагностики. Аттестация рабочего места по условиям труда на рабочем месте инженера-механика. Мероприятия по повышению уровня безопасности.

    курсовая работа , добавлен 07.01.2011

    Мероприятия, проводимые в лабораториях и научно-исследовательских центрах при пожарах, правила тушения и используемое оборудование, вещества, материалы. Порядок ликвидации радиационной и химической аварии. Техника безопасности при работе в лаборатории.

    презентация , добавлен 16.12.2011

    Виды бытовых происшествий со смертельным исходом, причины их возникновения. Отравление чистящими и моющими средствами, первая помощь. Предупреждение пищевого отравления. Утечка газа в квартире. Едкие вещества, кипящие жидкости. Меры предупреждения ожогов.

    презентация , добавлен 05.02.2013

    Причины и источники выделения вредных веществ, их виды. Пути поступления и распределения вредных веществ в организме. Задачи, режимы и основные способы противохимической защиты населения. Место лаборанта и правила безопасности в химической лаборатории.

ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТЕ В АНАЛИТИЧЕСКИХ ЛАБОРАТОРИЯХ (ОБЩИЕ ПОЛОЖЕНИЯ)


УТВЕРЖДАЮ Директор ФГУ "Центр экологического контроля и анализа" Г.М.Цветков 4 сентября 2003 г.


В данных Методических рекомендациях изложены основные правила безопасной работы в химической лаборатории, включая правила пожарной и электробезопасности, правила хранения и безопасной работы с химическими реактивами, правила работы в гидробиологическом отделе, а также способы оказания первой помощи при несчастных случаях.

Методические рекомендации предназначены для специалистов, работающих в химических лабораториях различного типа: аналитических, экологических, исследовательских, учебных и др.

1 ОБЩИЕ ПОЛОЖЕНИЯ

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 На работу в химико-аналитические лаборатории принимаются лица не моложе 18 лет, прошедшие медицинское освидетельствование для решения вопроса о возможности работы в лаборатории.

1.2 Вновь поступающие на работу допускаются к исполнению своих обязанностей только после прохождения вводного инструктажа о соблюдении мер безопасности, инструктажа на рабочем месте и после собеседования по вопросам техники безопасности.

1.3 Прохождение инструктажа обязательно для всех принимаемых на работу независимо от их образования, стажа работы и должности, а также для проходящих практику или производственное обучение.

1.4 Периодический инструктаж должен проводиться на рабочем месте дважды в год.

1.5 При переводе сотрудника на новые виды работ, незнакомые операции, перед работой с новыми веществами, а также в случае нарушения работником правил техники безопасности проводится внеплановый инструктаж .

1.6 Проведение всех видов инструктажа регистрируется в журнале (Приложение 1).

1.7 Распоряжением по лаборатории в каждом рабочем помещении назначаются ответственные за соблюдением правил техники безопасности, правильное хранение легковоспламеняющихся, взрывоопасных и ядовитых веществ, санитарное состояние помещений, обеспеченность средствами индивидуальной защиты и аптечками первой помощи с необходимым набором медикаментов (Приложение 6).

1.8 Проведение вводного инструктажа, контроль выполнения правил техники безопасности во всей лаборатории и ведение журнала инструктажа осуществляет назначенное начальником лаборатории должностное лицо, в подчинении которого находятся ответственные рабочих помещений.

1.9 Все работающие в лаборатории должны быть обеспечены необходимой спецодеждой и средствами индивидуальной защиты .

2 СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ

2.1 При работе в химической лаборатории необходимо надевать халат из хлопчатобумажной ткани.

2.2 При выполнении работ, связанных с выделением ядовитых газов и пыли, для защиты органов дыхания следует применять респираторы или противогазы и другие средства защиты.

2.3 При работе с едкими и ядовитыми веществами дополнительно применяют фартуки, средства индивидуальной защиты глаз и рук.

2.4 Для защиты рук от действия кислот, щелочей, солей, растворителей применяют резиновые перчатки [ , ].

На перчатках не должно быть порезов, проколов и других повреждений. Надевая перчатки, следует посыпать их изнутри тальком.

2.5 Для защиты глаз применяют очки различных типов, щитки, маски .

3 ПРАВИЛА ПОЖАРНОЙ БЕЗОПАСНОСТИ В ЛАБОРАТОРИИ

Все помещения лаборатории должны соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83 .

3.1 Лаборатория должна быть оснащена пожарными кранами (не менее одного на этаж) с пожарными рукавами. В каждом рабочем помещении должны быть в наличии огнетушители и песок, а в помещениях с огнеопасными и легковоспламеняющимися веществами - дополнительные средства пожаротушения (п.5.3.2).

3.2 В помещении лаборатории на видном месте должен быть вывешен план эвакуации сотрудников в случае возникновения пожара.

3.3 Распоряжением по лаборатории из числа сотрудников назначается группа (3-5 человек), которая организует все противопожарные мероприятия, получив инструктаж местной пожарной команды.

3.4 Все сотрудники лаборатории должны быть обучены правилам обращения с огне- и взрывоопасными веществами, газовыми приборами, а также должны уметь обращаться с противогазом, огнетушителем и другими средствами пожаротушения, имеющимися в лаборатории.

3.5 В помещениях лаборатории и в непосредственной близости от них (в коридорах, под лестницами) запрещается хранить горючие материалы и устанавливать предметы, загромождающие проходы и доступ к средствам пожаротушения.

3.6 Курить разрешается только в отведенном и оборудованном для этой цели месте.

Курить в помещениях лаборатории строго запрещается!

3.7 Без разрешения начальника лаборатории и лица, ответственного за противопожарные мероприятия, запрещается установка лабораторных и нагревательных приборов, пуск их в эксплуатацию, переделка электропроводки.

3.8 Все нагревательные приборы должны быть установлены на термоизолирующих подставках.

3.10 После окончания работы необходимо отключить электроэнергию, газ и воду во всех помещениях.

3.11 Каждый сотрудник лаборатории, заметивший пожар, задымление или другие признаки пожара, обязан:

- немедленно вызвать пожарную часть по телефону;

- принять меры по ограничению распространения огня и ликвидации пожара;

- поставить в известность начальника лаборатории, который в свою очередь должен известить сотрудников, принять меры к их эвакуации и ликвидации пожара.

4 ПРАВИЛА ЭЛЕКТРОБЕЗОПАСНОСТИ В ЛАБОРАТОРИИ

Все помещения лаборатории должны соответствовать требованиям электробезопасности при работе с электроустановками по ГОСТ 12.1.019-79 .

4.1 Все электрооборудование с напряжением свыше 36 В, а также оборудование и механизмы, которые могут оказаться под напряжением, должны быть надежно заземлены.

4.2 Для отключения электросетей на вводах должны быть рубильники или другие доступные устройства. Отключение всей сети, за исключением дежурного освещения, производится общим рубильником.

4.3 В целях предотвращения электротравматизма запрещается:

- работать на неисправных электрических приборах и установках;

- перегружать электросеть;

- переносить и оставлять без надзора включенные электроприборы;

- работать вблизи открытых частей электроустановок, прикасаться к ним;

- загромождать подходы к электрическим устройствам.

4.4 О всех обнаруженных дефектах в изоляции проводов, неисправности рубильников, штепсельных вилок, розеток, а также заземления и ограждений следует немедленно сообщить электрику.

4.5 В случае перерыва в подаче электроэнергии электроприборы должны быть немедленно выключены.

4.6 Запрещается использование в пределах одного рабочего места электроприборов класса "О" и заземленного электрооборудования.

4.7 Категорически запрещается прикасаться к корпусу поврежденного прибора или токоведущим частям с нарушенной изоляцией и одновременно к заземленному оборудованию (другой прибор с исправным заземлением, водопроводные трубы, отопительные батареи), либо прикасаться к поврежденному прибору, стоя на влажном полу.

4.8 При поражении электрическим током необходимо как можно быстрее освободить пострадавшего от действия электрического тока, отключив электроприбор, которого касается пострадавший. Отключение производится с помощью отключателя или рубильника.

4.9 При невозможности быстрого отключения электроприбора необходимо освободить пострадавшего от токоведущих частей деревянным или другим не проводящим ток предметом источник поражения.

4.10 Во всех случаях поражения электрическим током необходимо вызвать врача.

5 ПРАВИЛА БЕЗОПАСНОГО ХРАНЕНИЯ ХИМИЧЕСКИХ РЕАКТИВОВ

5.1 Общие положения

5.1.1 Лабораторные запасы реактивов должны храниться в специально оборудованных, хорошо вентилируемых, сухих помещениях (складах) согласно разработанной в лаборатории схеме размещения реактивов.

5.1.2 При размещении реактивов на складах следует неукоснительно соблюдать порядок совместного хранения пожаро- и взрывоопасных веществ. Не разрешается совместное хранение реактивов, способных реагировать друг с другом с выделением тепла или горючих газов. Запрещается также совместно хранить вещества, которые в случае возникновения пожара нельзя тушить одним огнетушащим средством.

5.1.4 Основным правилом при хранении и отборе реактивов является предохранение их от загрязнения.

5.1.5 На всех склянках с реактивами должны быть этикетки с указанием названия, квалификации и срока годности .

5.1.6 Реактивы, которые нельзя хранить в стеклянной таре, помещают в тару из материалов, устойчивых к действию данного реактива. Например, плавиковую кислоту и щелочи хранят в бутылях из полиэтилена.

5.1.7 Реактивы, разлагающиеся или изменяющие свои свойства под действием света (например, диэтиловый эфир, пероксиды, соли серебра), хранят в склянках из темного или желтого стекла.

5.1.8 Гигроскопические вещества и вещества, окисляющиеся при соприкосновении с воздухом, должны храниться в герметичной таре. Для герметизации пробок используют парафин.

5.1.9 Отработанные реактивы необходимо сливать в отдельные склянки для последующей переработки или передачи в организации, занимающиеся утилизацией химических веществ.

Сливать концентрированные кислоты, щелочи, ядовитые и горючие вещества в канализацию запрещается!

5.2 Хранение химических реактивов в лаборатории

5.2.1 В рабочих помещениях допускается хранить нелетучие, непожароопасные и малотоксичные твердые вещества и водные растворы, разбавленные кислоты и щелочи, в количествах, необходимых для анализов.

5.2.2 Концентрированные кислоты в объеме не более 2 дм хранятся в стеклянной посуде с притертыми стеклянными крышками или пластмассовыми пробками в эксикаторе или стеклянной емкости с крышкой в вытяжном шкафу. Для лучшей герметичности надевают резиновые колпачки.

5.2.3 Концентрированные растворы щелочей хранят в вытяжном шкафу, отдельно от кислот, в полиэтиленовой таре. Вместе с щелочами хранится аммиак.

5.2.4 Хранение легковоспламеняющихся жидкостей (ЛВЖ) допускается в толстостенных, снабженных герметичными пробками бутылях, вместимостью не более 1 дм, особо опасные ЛВЖ - в объеме не более суточной потребности (Таблица 1 ). Бутыли с ЛВЖ помещают в специальные металлические ящики вдали от источников тепла и окислителей (хлоратов, нитратов, азотной кислоты, перекиси водорода, перманганатов).

Таблица 1

Предельно допустимые объёмы (ЛВЖ), разрешенные к хранению в рабочих помещениях

ВЕЩЕСТВО

ОБЪЕМ, дм

Дихлоэтан

Диэтиловый эфир

Сероуглерод

Уксусная кислота

Циклогексан

Этилацетат

5.2.5 Четыреххлористый углерод и хлороформ хранят в нижнем отделении вытяжного шкафа.

5.2.6 Склянки с концентрированным бромом хранят в коробке или полиэтиленовой банке с листовым асбестом в закрывающемся сейфе. Бромная вода хранится в склянках с колпачками, за неимением последних допускается хранение в эксикаторе с притертой крышкой в вытяжном шкафу.

5.2.7 Органические вещества с резким раздражающим запахом (пиридин, изоамиловый спирт и др.) хранятся в склянках, хорошо закрытых пробками с резиновыми колпачками.

5.2.8 Металлическая ртуть и другие ядовитые вещества (Приложение 3) хранятся в запирающихся шкафах (сейфах) в строгом соответствии с инструкциями по их хранению.

5.2.9 Едкие вещества (железо треххлористое, йод, триэтаноламин, валериановая, пропионовая и др. органические кислоты) хранятся в стеклянной посуде с притертыми пробками в металлическом ящике под вытяжным шкафом. Для лучшей герметичности на пробки надевают резиновые колпачки.

5.3 Правила хранения пожароопасных реактивов

К пожароопасным относятся огнеопасные, самовоспламеняющиеся (Приложение 4) и взрывоопасные (Приложение 5) вещества.

5.3.1 Запасы пожароопасных реактивов должны храниться в изолированных, хорошо вентилируемых помещениях вдали от отопительных приборов и прямых лучей солнца.

5.3.2 Помещения для хранения пожароопасных веществ должны быть оснащены противопожарными средствами: порошковыми огнетушителями, сухим песком, лопатами, ведрами, листовым асбестом, кошмой, суконными одеялами и рукавицами.

Тушение пожара водой и воздушно-механической пеной недопустимо!

5.3.3 В местах хранения пожароопасных реактивов запрещено размещать посторонние предметы и мебель, загромождающие доступ к средствам пожаротушения.

5.3.4 Хранение пожароопасных веществ допускается в строго соответствующей таре, имеющей этикетки с точным наименованием вещества и надписью "Огнеопасно " ("Взрывоопасно ").

5.3.5 Совместное хранение в одном помещении самовоспламеняющихся, огнеопасных и взрывоопасных веществ не допускается. При отсутствии отдельных помещений допускается хранение небольших количеств (10-15 г) вышеназванных веществ в одном помещении, но в отдельных, плотно закрывающихся железных шкафах.

5.3.6 Не разрешается также совместно хранить вещества, которые способны при своем взаимодействии вызывать образование пламени или выделять большое количество тепла. Так, щелочные металлы и белый фосфор нельзя хранить с элементарными бромом и йодом, сильные окислители (бертолетову соль, марганцевокислый калий, перекиси) - с восстановителями (углем, серой, крахмалом, фосфором) и т.п.

6 ПРАВИЛА БЕЗОПАСНОЙ РАБОТЫ С ХИМИЧЕСКИМИ ВЕЩЕСТВАМИ

6.1 Общие положения

При работе в химической лаборатории необходимо соблюдать требования техники безопасности по ГОСТ 12.1.007-76 "Вредные вещества. Классификация и общие требования безопасности".

6.1.1 При работе с химическими реактивами в лаборатории должно находиться не менее двух сотрудников.

6.1.2 Приступая к работе, сотрудники обязаны осмотреть и привести в порядок свое рабочее место, освободить его от ненужных для работы предметов.

6.1.3 Перед работой необходимо проверить исправность оборудования, рубильников, наличие заземления и пр.

6.1.4 Работа с едкими и ядовитыми веществами, а также с органическими растворителями проводится только в вытяжных шкафах.

6.1.5 Запрещается набирать реактивы в пипетки ртом, для этой цели следует использовать резиновую грушу или другие устройства.

6.1.6 При определении запаха химических веществ следует нюхать осторожно, направляя к себе пары или газы движением руки.

6.1.7 Работы, при которых возможно повышение давления, перегрев стеклянного прибора или его поломка с разбрызгиванием горячих или едких продуктов, также выполняются в вытяжных шкафах. Работающий должен надеть защитные очки (маску), перчатки и фартук.

6.1.8 При работах в вытяжном шкафу створки шкафа следует поднимать на высоту не более 20-30 см так, чтобы в шкафу находились только руки, а наблюдение за ходом процесса вести через стекла шкафа.

6.1.9 При работе с химическими реактивами необходимо включать и выключать вытяжную вентиляцию не менее чем за 30 минут до начала, и после окончания работ.

6.1.10 Смешивание или разбавление химических веществ, сопровождающееся выделением тепла, следует проводить в термостойкой или фарфоровой посуде.

6.1.11 При упаривании в стаканах растворов следует тщательно перемешивать их, так как нижний и верхний слои растворов имеют различную плотность, вследствие чего может произойти выбрасывание жидкости.

6.1.12 Во избежание ожогов, поражений от брызг и выбросов нельзя наклоняться над посудой, в которой кипит какая-либо жидкость.

6.1.13 Нагревание посуды из обычного стекла на открытом огне без асбестированной сетки запрещено.

6.1.14 При нагревании жидкости в пробирке держать ее следует отверстием в сторону от себя и от остальных сотрудников.

6.1.15 Ни при каких обстоятельствах нельзя допускать нагревание жидкостей в колбах или приборах, не сообщающихся с атмосферой.

6.1.16 Нагретый сосуд нельзя закрывать притертой пробкой до тех пор, пока он не охладится до температуры окружающей среды.

6.2 Работа с кислотами и щелочами

6.2.1 Работа с концентрированными кислотами и щелочами проводится только в вытяжном шкафу и с использованием защитных средств (перчаток, очков). При работе с дымящей азотной кислотой с удельной плотностью 1,51-1,52 г/см, а также с олеумом следует надевать также резиновый фартук.

6.2.2 Используемые для работы концентрированные азотная, серная, соляная кислоты должны храниться в вытяжном шкафу в стеклянной посуде емкостью не более 2 дм. В местах хранения кислот недопустимо нахождение легковоспламеняющихся веществ.

Разбавленные растворы кислот (за исключением плавиковой) также хранят в стеклянной посуде, а щелочей - в полиэтиленовой таре.

6.2.3 Работа с плавиковой кислотой требует особой осторожности и проводится обязательно в вытяжном шкафу. Хранить плавиковую кислоту необходимо в полиэтиленовой таре.

6.2.4 Переносить бутыли с кислотами разрешается вдвоем и только в корзинах, промежутки в которых заполнены стружкой или соломой. Более мелкие емкости с концентрированными кислотами и щелочами следует переносить в таре, предохраняющей от ожогов (специальные ящики с ручкой).

6.2.5 Концентрированные кислоты, щелочи и другие едкие жидкости следует переливать при помощи специальных сифонов с грушей или других нагнетательных средств.

6.2.6 Для приготовления растворов серной, азотной и других кислот их необходимо приливать в воду тонкой струей при непрерывном помешивании. Для этого используют термостойкую посуду, так как процесс растворения сопровождается сильным разогреванием.
После подтверждения оплаты, страница будет

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РАБОТЕ

В ХИМИЧЕСКОЙ ЛАБОРАТОРИИ

Многие из веществ, используемых в органической химии, являются в той или иной мере воспламеняющимися, или токсичными, или теми и другими одновременно. Поэтому при работе в лаборатории необходимо строго соблюдать основные правила техники безопасности независимо от того, какой выполняют эксперимент.

1. Категорически запрещается работать одному в лаборатории, так как в экстренном случае будет некому оказать пострадавшему первую помощь и ликвидировать последствия неудавшегося эксперимента. Работать следует только в отведенное время под контролем преподавателя или других сотрудников.

2. Необходимо соблюдать тишину, чистоту и порядок. Поспешность и неряшливость в работе часто приводят к несчастным случаям. Нельзя отвлекать от работы и отвлекать своих товарищей. Запрещается держать на лабораторном столе посторонние предметы (сумки, учебники и т.д.).

4. Каждый должен знать, где находятся средства индивидуальной защиты, аптечка, средства для тушения пожара. Кроме очков, в лаборатории должны быть защитные маски, респираторы и противогазы. Во всех лабораториях в легко доступных местах находятся средства для пожаротушения (ящики с песком и совком, огнетушители, противопожарные одеяла), а также аптечки, которые снабжены всеми медикаментами, необходимыми для оказания первой медицинской помощи (растворы борной кислоты, гидрокарбоната натрия, перманганата калия, танина, нашатырного спирта, а также вата, бинт, иодная настойка, активированный уголь, мазь от ожогов, склянка для промывания глаз).

5. В лаборатории необходимо находиться в застегнутом хлопчатобумажном халате. Это обеспечивает некоторую индивидуальную защиту и позволяет избежать загрязнения одежды.

6. Приступать к работе можно после усвоения всей техники ее выполнения. Если вы испытываете какие-либо сомнения в методике проведения эксперимента или в технике безопасности, прежде чем продолжить работу, проконсультируйтесь с преподавателем.

7. Нельзя проводить опыты в загрязненной посуде. Посуду следует мыть сразу после окончания эксперимента.

8. Категорически запрещается пробовать химические вещества на вкус. Нюхать вещества следует осторожно, не поднося сосуд близко к лицу, а лишь направляя к себе пары или газы легким движением руки, при этом не следует делать полный вдох. Жидкие органические вещества и их растворы запрещается набирать в пипетки ртом, для этого необходимо использовать резиновые груши и другие приспособления.

9. В процессе работы необходимо следить, чтобы вещества не попадали на кожу, так как многие из них вызывают раздражение и ожоги кожи и слизистых оболочек.

10. Все банки, в которых хранятся вещества, должны быть снабжены этикетками с соответствующими названиями.

11. Запрещается нагревать, смешивать и взбалтывать реактивы вблизи лица. При нагревании нельзя держать пробирку или колбу отверстием к себе или в направлении работающего товарища.

12. Необходимо пользоваться защитными очками в следующих случаях:

а) при работе с едкими веществами (с концентрированными растворами кислот и щелочей, при дроблении твердой щелочи и т.д.);

б) при перегонке жидкостей при пониженном давлении и работе с ваккум-приборами;

в) при работе со щелочными металлами;

г) при определении температуры плавления вещества в приборе с концентрированной серной кислотой;

д) при работе с ампулами и изготовлении стеклянных капилляров.

13. Запрещено выливать в раковину остатки кислот и щелочей, огнеопасных и взрывоопасных, а также сильно пахнущих веществ. Для слива этих веществ в вытяжном шкафу должны находиться специальные сосуды с плотно притертыми крышками и соответствующими этикетками («СЛИВ КИСЛОТ», «СЛИВ ЩЕЛОЧЕЙ», «СЛИВ ОРГАНИКИ»).

14. Не разрешается бросать в раковину стекла от разбитой посуды, бумагу и вату.

15. После завершения работы необходимо отключить газ, воду, вытяжные шкафы и электроэнергию.

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РАБОТЕ С КИСЛОТАМИ И ЩЕЛОЧАМИ

1. Хранить концентрированные кислоты и щелочи следует в вытяжном шкафу в прочной посуде на поддоне.

2. Все работы с кислотами и щелочами нужно проводить в защитных очках.

3. Концентрированную соляную и азотную кислоты можно переливать только в вытяжном шкафу. Разбавление кислот следует проводить в жаростойкой посуде, при этом кислоту необходимо приливать к воде небольшими порциями, при перемешивании (нельзя приливать воду к концентрированной кислоте, так как в этом случае выделяется большое количество теплоты, воды, как менее плотное вещество, вскипает на поверхности кислоты, и жидкость может быть выброшена из сосуда).

4. При растворении гидроксидов натрия и калия кусочки щелочи можно брать только пинцетом или шпателем, но не руками; растворение этих веществ следует проводить небольшими порциями.

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РАБОТЕ С БРОМОМ

1. Бром необходимо хранить только в толстостенной посуде из темного стекла с плотно притертыми пробками в ящике с песком под тягой отдельно от концентрированных кислот и аммиака.

2. Все работы с бромом необходимо проводить в вытяжном шкафу в резиновых перчатках и защитных очках, так как он является сильно ядовитым веществом, действующим на слизистые оболочки и вызывающим при попадании на кожу тяжело заживающие ожоги. Категорически запрещается набирать бром в пипетку ртом; для этого следует использовать резиновую грушу.

3. Переносить склянки с бромом можно только в емкостях с песком.

ТЕХНИКА БЕЗОПАСНОСТИ ПРИ РАБОТЕ С ЛЕГКОВОСПЛАМЕНЯЮЩИМИСЯ ЖИДКОСТЯМИ

1. Работы с легковоспламеняющимися жидкостями (ЛВЖ) следует проводить подальше от огня. Запрещается нагревать летучие и легковоспламеняющиеся жидкости (ацетон, эфиры, спирты, петролейный эфир, бензин, бензол, сероуглерод) на открытом пламени. Для нагревания ЛВЖ можно пользоваться водяной баней или электрической плиткой с закрытой спиралью, при этом колба должна быть снабжена водяным холодильником.

2. Нельзя нагревать горючие вещества в открытых сосудах. Это следует делать в колбах с обратным холодильником.

3. Перегонять ЛВЖ следует в приборе с водяным холодильником или на роторном испарителе. Нельзя перегонять жидкости досуха – это может привести к взрыву или пожару. Приборы, в которых содержится ЛВЖ, следует разбирать после удаления всех источников пламени (зажженные газовые горелки, спиртовки, электрические плитки с открытой спиралью и т.д.) и полного охлаждения колбы.

5. ЛВЖ должны храниться в металлических шкафах в количествах, не превышающих ежедневные потребности.

МЕРЫ БЕЗОПАСНОСТИ ПРИ УТЕЧКЕ ГАЗА И ТУШЕНИИ ЛОКАЛЬНОГО ПОЖАРА И ГОРЯЩЕЙ ОДЕЖДЫ

1. При возникновении пожара нужно быстро убрать все горючие вещества подальше от места возгорания, отключить газовую магистраль, все электроприборы и прекратить активный доступ воздуха в лабораторию.

2. Пламя следует тушить песком или противопожарным одеялом. Тушение пламени водой может привести к расширению очага пожара. В случае более обширной площади возгорания следует пользоваться огнетушителем.

3. Если на ком-либо загорится одежда, необходимо плотно на- крыть загоревшуюся ткань противопожарным одеялом. При возгорании одежды нельзя бежать, так как это способствует распространению пламени.

ОКАЗАНИЕ ПЕРВОЙ МЕДИЦИНСКОЙ ПОМОЩИ ПРИ ОЖОГАХ И ОТРАВЛЕНИЯХ ХИМИЧЕСКИМИ ВЕЩЕСТВАМИ

1. При термических ожогах первой степени (краснота и припухлость) обожженное место надо обработать спиртовым раствором танина, 96%-ным этиловым спиртом или раствором перманганата калия. При ожогах второй и третьей степени (пузыри и язвы) допустимы только обеззараживающие примочки из раствора перманганата калия, после чего необходимо обратиться к врачу.

2. При ожогах кислотами необходимо промыть пораженное место большим количеством проточной воды, а затем 3%-ным раствором гидрокарбоната натрия, после чего – снова водой.

3. При ожогах щелочами нужно промыть очаг поражения проточной водой, а затем разбавленным раствором борной или уксусной кислоты.

4. При попадании щелочи или кислоты в глаза необходимо промыть их проточной водой (3 – 5мин), а затем раствором борной кислоты (в случае попадания щелочи) или гидрокарбоната натрия (в случае попадания кислоты), после чего обратиться к врачу.

5. При ожогах фенолом очаг поражения следует обработать 70%-ным этиловым спиртом, а затем глицерином до исчезновения белых пятен на коже. При отравлении парами фенола категорически запрещается пить молоко.

6. При ожогах бромом его нужно смыть 96%-ным спиртом или разбавленным раствором щелочи, после чего место поражения смазать мазью от ожогов и обратиться к врачу. При отравлении парами брома необходимо несколько раз глубоко вдохнуть пары этилового спирта, а затем выпить молока.

7. При попадании на кожу едких органических веществ, не растворимых в воде, их необходимо смыть большим количеством подходящего растворителя. После оказания первой помощи пострадавший должен быть направлен в медпункт.



Что еще почитать