Изоферменты различаются между собой. Изоферменты: биологическая роль

Большинство ферментов представлены в клетках организма в виде множественных молекулярных форм, называемых изоферментами или изоэнзимами . Изоферменты – это сходные по структуре белковые молекулы, способные катализировать одну и ту же биохимическую реакцию, но различающиеся по первичной структуре входящих в их состав полипептидов. Они имеют одинаковую структуру каталитического центра, вследствие чего обладают одним типом субстратной специфичности. Изоферменты одного и того же фермента отличаются оптимумами рН, температуры, других условий внешней среды, по их молярной активности, но все они катализируют одну и ту же реакцию. Когда из клеток организма выделяют какой-либо фермент и определяют его активность, то всегда имеют дело с конкретными изоферментами данного фермента.

Молекулы ферментов чаще всего представляют собой олигомеры, построенные из двух или нескольких полипептидов, которые в той или иной степени различаются первичными структурами, но имеют однотипную третичную структуру и поэтому при взаимодействии образуют функционально родственные белки. Как было показано ранее, различающиеся первичными структурами полипептиды в составе олигомерных молекул кодируются разными генами, в связи с чем природа и набор изоферментов определяются генотипом организма.

Впервые механизм образования изоферментов был выяснен при изучении множественных молекулярных форм фермента лактатдегидрогеназы, катализирующего превращение молочной кислоты в пировиноградную в клетках человека и животных:

СН 3 – СН(ОН) – СООН ¾® СН 3 – С – СООН

В ходе исследований были выделены кристаллические препараты лактатдегидрогеназы из клеток печени, сердечной мышцы и скелетных мышц и подвергнуты разделению методом электрофореза в щелочной буферной системе (рН 8,8). В таких условиях молекулы фермента имеют отрицательный заряд и в зависимости от величины заряда проявляют разную подвижность в направлении к аноду. В процессе электрофоретического разделения было выделено пять белковых фракций, каждая из которых представляла собой тетрамерные молекулы с молекулярной массой около 140 тыс., образованные из различных комбинаций двух типов полипептидов, обозначаемых Н и М . Полипептиды Н наиболее активно синтезируются в сердечной мышце и печени и больше содержат в своем составе остатков моноаминодикарбоновых кислот. Второй тип полипептидов М преимущественно синтезируется в скелетных мышцах и они характеризуются меньшим содержанием дикарбоновых аминокислот. С участием указанных типов полипептидов образуется пять разновидностей ферментных молекул, являющихся изоферментами лактатдегидрогеназы: Н 4 , Н 3 М , Н 2 М 2 , НМ 3 , М 4 . Каждая молекула изофермента как тетрамер состоит из 4 полипептидов, которые могут быть идентичными (Н 4 и М 4 ) или разными (Н 3 М , Н 2 М 2 , НМ 3 ). Количественное содержание каждого изофермента в данной ткани зависит от концентрации в ней полипептидов Н и М .


Вследствие того, что полипептиды Н содержат больше в своем составе остатков дикарбоновых аминокислот, тетрамер Н 4 при рН среды 8,8 имеет наибольший отрицательный заряд, вследствие чего быстрее движется к аноду в процессе электрофореза (рис. 19)

Тетрамер М 4 характеризуется наименьшей подвижностью к аноду, так как его молекулы построены из полипептидов с меньшим содержанием дикарбоновых аминокислот. Другие изоферменты распределяются при электрофорезе между фракциями Н 4 и М 4 в зависимости от числа полипептидов Н и М в их молекулах.

На примере лактатдегидрогиназы мы видим, если молекула фермента - тетрамер, образованный из двух типов полипептидов, то возникают пять изоферментов. Но если молекулы тетрамерного фермента формируются из трех типов полипептидов, например А , Б и В , тогда возникают следующие комбинации полипептидов в молекуле: А 4 , Б 4 , В 4 , А 3 Б , А 3 В , А 2 Б 2 , А 2 В 2 , А 2 БВ , АБ 3 , АВ 3 , АБ 2 В , АБВ 2 , Б 3 В , В 3 Б , Б 2 В 2 . На этом примере видно, что набор изоферментов заметно возрастает при увеличении числа разных полипептидов, из которых строятся молекулы белка–фермента. Набор изоферментов также увеличивается при возрастании степени олигомерности молекулы фермента. Так, у лактатдегидрогиназы из двух разных полипептидов строятся тетрамерные молекулы и возникают 5 изоферментов, а у гексамерного белка из двух типов полипептидов образуются уже семь изоферментов, у октамерного белка – 9 и т.д. Таким образом, общий набор изоферментов данного ферментного белка определяется степенью олигомерности его молекулы и числом разных полипептидов, из которых образуются молекулы белка. Следует отметить, что к изоферментам не относятся молекулы фермента, измененные в результате повреждения структуры белка или модификации его молекул путем присоединения активных группировок (так называемая посттрансляционная модификация белков).

Поскольку изоферменты – это определенный набор белковых молекул, способных катализировать превращение одного и того же субстрата, то для их выявления используют методы разделения, принятые для белков, с последующим определением каталитической активности. Наиболее часто для разделения изоферментов используют метод электрофореза в полиакриламидном геле, который по сравнению с другими методами имеет наиболее высокую разрешающую способность. При разделении этим методом можно выявить изоферменты, различающиеся по суммарному заряду молекулы, который определяется содержанием в белке остатков моноаминодикарбоновых кислот. Если же в составе организма имеются генетические варианты молекул фермента, у которых различия в аминокислотном составе не приводят к изменению заряда молекулы, то для их разделения используют модификации электрофореза, основанные на других принципах, например, изоэлектрофокусирование белков.

Особенно большое разнообразие множественных молекулярных форм наблюдается у растительных ферментов. Практически каждый фермент представлен в растении в виде набора изоферментов, каждый из которых проявляет каталитическую активность в строго определенных условиях, зависящих от внутренней физиологической среды, что позволяет организму обеспечивать специфичность обмена веществ в данном органе, ткани или внутриклеточном компартменте (межклеточном отсеке). Так, например, в листьях и корнях растений разная физиологическая среда, но в них может проходить одна и та же реакция за счет того, что ее катализируют разные изоферменты данного фермента.

В процессе роста и развития растений постоянно изменяется внутренняя физиологическая среда и внешние условия, в соответствии с этим изменяется и набор изоферментов каждого фермента. Особенно заметно наблюдаются качественные и количественные изменения состава изоферментов при созревании и прорастании семян.

На рис. 21 показаны электрофореграммы изоферментов a-амилазы созревающего, зрелого и прорастающего зерна пшеницы, различающихся по их подвижности к аноду. При сравнении электорофореграмм видно, что в созревающем зерне пшеницы амилолитическую активность имеют четыре, изофермента с низкой подвижностью к аноду, а в прорастающем зерне также четыре, но уже других по электрофоретической подвижности изофермента. Вследствие того, что при созревании зерна происходит связывание амилаз белковыми ингибиторами в неактивный комплекс, в полностью созревшем зерне при благоприятных погодных условиях выявляется слабая амилолитическая активность только одного изофермента a-амилазы. Однако в зерновках, сформировавшихся при влажной погоде, активность большинства изоферментов a - амилаз, выявленных в созревающем зерне, сохраняется.

Наличие в клетках организма множественных молекулярных форм одного и того же фермента, проявляющих каталитическую активность при разных физиологических условиях позволяет организму осуществлять с необходимой интенсивностью биохимические процессы при изменении условий внешней среды.

Когда изменяются внешние условия, то они становятся неблагоприятными для проявления каталитической активности определенных изоферментов, но биохимическая реакция не прекращается, так как вступают в действие другие изоферменты, которые способны катализировать данное превращение в изменившихся условиях. Если появляется новый изофермент, то он расширяет диапазон выживаемости организма. Чем больше набор изоферментов, тем шире диапазон их действия и лабильнее происходит адаптация организма к неблагоприятным факторам внешней среды.

Изучение ферментных систем растений показывает, что специфичность обмена веществ у разных генотипов обеспечивается характерным для каждого генотипа набором изоферментов. Чем ближе генотипы растений в систематическом отношении, тем меньше различается у них изоферментный состав ферментов. В связи с этим изоферментный анализ довольно успешно применяется для уточнения систематики живых организмов, выявления филогенетического родства между видами и сортами растений, а также проверки генетической чистоты или, наоборот, генетического разнообразия растительной популяции.

Когда мы говорим «малатдегидрогеназа» или «глюкозо-6-фосфатаза», то обычно имеем в виду конкретный белок, обладающий форментативной активностью, однако в действительности эти наименования охватывают все белки, катализирующие окисление малата в оксалоацетат или гидролиз глюкозо-6-фосфата с образованием глюкозы и . В частности, после выделения малатдегидрогеназы из различных источников (печени крысы, Е. coli) обнаружилось, что ферменты из печени и фермент из Е. coli, катализирующие одну и ту же реакцию, различаются во многих отношениях по своим физическим и химическим свойствам. Физически различимые формы ферментов, обладающие одним и тем же видом каталитической активности, могут присутствовать в разных тканях одного организма, в разных типах клеток одной ткани и даже в прокариотическом организме, например в Е. coli. Это открытие было сделано благодаря применению электрофоретических методов разделения белков, в результате чего были обнаружены электрофоретически разные формы определенной ферментативной активности.

Термин «изофермент» («изозим») охватывает все вышеупомянутые физически различимые белки с данной каталитической активностью, однако на практике, и особенно в клинической медицине, его употребляют в более узком смысле, подразумевая физически различимые и поддающиеся разделению формы данного фермента, присутствующие в различных типах клеток данного эукариотического организма, например человека. Изозимы неизменно обнаруживаются в сыворотке и в тканях всех позвоночных, насекомых и в одноклеточных организмах. При этом число ферментов и их содержание сильно варьируют. Известны изоферментные формы дегидрогеназ, оксидаз, трансаминаз, фосфатаз, трансфос-форилаз и протеолитических ферментов. В различных тканях могут находиться разные изоферменты, и эти изоферменты могут иметь неодинаковое сродство к субстратам.

Диагностическое значение изозимов

Медицинский интерес к изозимам возник после того, как было обнаружено, что сыворотка человека содержит несколько изозимов лактатдегидрогеназы и что их относительное содержание значительно изменяется при определенных патологических состояниях. Впоследствии было выявлено много других случаев изменения относительного содержания изозимов при разных заболеваниях.

Изозимы сывороточной лактатдегидрогеназы обнаруживаются после электрофореза при на крахмальном, агаровом или полиакриламидном гелях. При указанном значении изозимы несут разный заряд и распределяются на электрофореграмме в пяти разных местах. Далее изозимы можно обнаружить благодаря их способности катализировать восстановление бесцветных красителей в нерастворимую окрашенную форму.

Типичный набор реагентов для обнаружения изозимов дегидрогеназы включает:

1) восстановленный субстрат (например, лактат);

2) кофермент ;

3) краситель в окисленной форме (например, голубая нитротетразолиевая соль);

4) переносчик электронов от NADH к красителю [например, феназинметасульфат (ФМС)];

5) буфер; активирующие ионы (если требуются).

Лактатдегидрогеназа катализирует перенос двух электронов и одного иона от лактата к

Рис. 7.8. Реакция, катализируемая -лактатдегидрогеназой.

(рис. 7.8). Если электрофореграмму опрыскать приведенной выше смесью и затем инкубировать при то реакция сопряженного переноса электронов будет протекать только в тех местах, где присутствует лактатдегидрогеназы (рис. 7.9). Относительную плотность окраски полос можно далее оценить количественно с помощью сканирующего фотометра (рис. 7.10). Изозим с наибольшим отрицательным зарядом обозначают .

Физическая природа изозимов

Олигомерные ферменты, образованные разными протомерами, могут быть представлены несколькими формами. Часто определенная ткань продуцирует преимущественно один из протомеров. Если активный олигомерный фермент (например, тетрамер) может быть построен из таких протомеров в различных комбинациях, то образуются изозимы.

Изозимы лактатдегидрогеназы различаются на уровне четвертичной структуры. Олигомерная молекула лактатдегидрогеназы (мол. масса 130000) состоит из четырех протомеров двух типов, Н и М (оба с мол. массой около 34000). Каталитической активностью обладает только тетрамерная молекула.

Рис. 7.9. Локализация лактатдегидрогеназы на электрофореграммс с использованием системы сопряженных реакций.

Если порядок соединения протомеров не имеет значения, то протомеры могут быть скомпонованы пятью способами:

Маркерт подобрал условия для разрушения и реконструкции четвертичной структуры и сумел выяснить взаимоотношения между изозимами лактатдегидрогеназы. Расщепление и реконструкция лактат-дегидрогеназ I, и 15 не приводят к образованию новых изозимов. Следовательно, эти два изозима содержат только один тип протомеров. Когда такой же процедуре была подвергнута смесь лактатдегидрогеназ 1, и 15, появились также формы 12, 13 и 14. Соотношение изозимов соответствует приведенному ниже субъединичному составу:

Синтез Н- и М-субъединиц детерминируется разными генетическими локусами, и они по-разному экспрессируются в разных тканях (например, в сердечной и скелетной мышцах).

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты ) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент , и небелковую часть – кофактор . Примером сложных ферментов являются сукцинатдегидрогеназа (содержит ФАД), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем), лактатдегидрогеназа (содержит Zn 2+), амилаза (содержит Ca2+ ).

Кофактор , в свою очередь, может называться коферментом (НАД+ , НАДФ+ , ФМН, ФАД, биотин) или простетической группой (гем, олигосахариды, ионы металлов Fe2+ , Mg2+ , Ca2+ , Zn2+ ).

Деление на коферменты и простетические группы не всегда однозначно:
если связь кофактора с белком прочная, то в этом случае говорят о наличии простетической группы ,
но если в качестве кофактора выступает производное витамина - то его называют коферментом , независимо от прочности связи.

Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут. Кофактор входит в состав активного центра, участвует в связывании субстрата или в его превращении.

Как многие белки, ферменты могут быть мономерами , т.е. состоять из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Структурно-функциональная организация ферментов

В составе фермента выделяют области, выполняющие различную функцию:

1. Активный центр – комбинация аминокислотных остатков (обычно 12-16), обеспечивающая непосредственное связывание с молекулой субстрата и осуществляющая катализ. Аминокислотные радикалы в активном центре могут находиться в любом сочетании, при этом рядом располагаются аминокислоты, значительно удаленные друг от друга в линейной цепи. В активном центре выделяют два участка:

  • якорный (контактный, связывающий) – отвечает за связывание и ориентацию субстрата в активном центре,
  • каталитический – непосредственно отвечает за осуществление реакции.
Схема строения ферментов

У ферментов, имеющих в своем составе несколько мономеров, может быть несколько активных центров по числу субъединиц. Также две и более субъединицы могут формировать один активный центр.

У сложных ферментов в активном центре обязательно расположены функциональные группы кофактора.

Схема формирования сложного фермента

2. Аллостерический центр (allos – чужой) – центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции.

Аллостерические ферменты являются полимерными белками, активный и регуляторный центры находятся в разных субъединицах.

Схема строения аллостерического фермента

В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество (см "Регуляция активности ферментов ").

Изоферменты

Изоферменты – это молекулярные формы одного и того же фермента, возникшие в результате небольших генетических различий в первичной структуре фермента, но катализирующие одну и ту же реакцию . Изоферменты отличаются сродством к субстрату, максимальной скоростью катализируемой реакции, чувствительностью к ингибиторам и активаторам, условиями работы (оптимум pH и температуры).

Как правило, изоферменты имеют четвертичную структуру, т.е. состоят из двух или более субъединиц. Например, димерный фермент креатинкиназа (КК) представлен тремя изоферментными формами, составленными из двух типов субъединиц: M (англ. muscle – мышца) и B (англ. brain – мозг). Креатинкиназа-1 (КК-1) состоит из субъединиц типа B и локализуется в головном мозге, креатинкиназа-2 (КК-2) – по одной М- и В-субъединице, активна в миокарде, креатинкиназа-3 (КК-3) содержит две М-субъединицы, специфична для скелетной мышцы.

Также существует пять изоферментов лактатдегидрогеназы (роль ЛДГ) – фермента, участвующего в обмене глюкозы. Отличия между ними заключаются в разном соотношении субъединиц Н (англ. heart – сердце) и М (англ. muscle – мышца). Лактатдегидрогеназы типов 1 (Н 4) и 2 (H 3 M 1) присутствуют в тканях с аэробным обменом (миокард, мозг, корковый слой почек), обладают высоким сродством к молочной кислоте (лактату) и превращают его в пируват. ЛДГ-4 (H 1 M 3) и ЛДГ-5 (М 4) находятся в тканях, склонных к анаэробному обмену (печень, скелетные мышцы, кожа, мозговой слой почек), обладают низким сродством к лактату и катализируют превращение пирувата в лактат. В тканях с промежуточным типом обмена (селезенка, поджелудочная железа, надпочечники, лимфатические узлы) преобладает ЛДГ-3 (H 2 M 2).

Еще одним примером изоферментов является группа гексокиназ , которые присоединяют фосфатную группу к моносахаридам гексозам и вовлекают их в реакции клеточного метаболизма. Из четырех изоферментов выделяется гексокиназа IV (глюкокиназа ), которая отличается от остальных изоферментов высокой специфичностью к глюкозе, низким сродством к ней и нечувствительностью к ингибированию продуктом реакции.

Мультиферментные комплексы

В мультиферментном комплексе несколько ферментов прочно связаны между собой в единый комплекс и осуществляют ряд последовательных реакций, в которых продукт реакции непосредственно передается на следующий фермент и является только его субстратом. Возникает туннельный эффект , т.е. субстрат попадает в созданный ферментами "туннель". В результате промежуточные метаболиты избегают контакта с окружающей средой, снижается время их перехода к следующему активному центру и значительно ускоряется скорость реакции.

) и катализирующие конкретные реакции. Такая способность возникает в результате формирования промежуточного продукта при связывании антитела с антигеном (имитация переходного комплекса E-X ферментативной реакции).

ИЗОФЕРМЕНТЫ (син.: множественные формы ферментов, изозимы ) - молекулярные формы (разновидности) определенного фермента, отличающиеся только по физико-химическим свойствам; определение изофермент-ного спектра различных ферментов в сыворотке крови является одним из важных методов клин, энзимодиагностики. И. обнаружены в тканях человека, животных, растений и микроорганизмов. Известно св. 50 ферментов, представленных в виде И. в различных органах и тканях человека, животных и растений.

И. могут отличаться друг от друга по четвертичной структуре, т. е. по характеру и количеству субъединиц, входящих в состав их молекул, по электрофоретической подвижности, адсорбционным свойствам, сродству к субстрату, оптимальному значению pH, субклеточной локализации, специфичности в отношении коферментов (см.) и т. д. Так, напр., большинство органов и тканей человека и животных содержит пять И. лактатдегидрогеназы (ЛДГ), каждый из которых представляет собой различные комбинации из четырех субъединиц двух типов с мол. весом 34 500, условно обозначенных «Н» и «М» (см. Лактатдегидрогеназа). Оба типа субъединиц различаются по аминокислотному составу, последовательности остатков аминокислот в молекуле, иммунохим. и электрофоретическим свойствам. Синтез субъединиц контролируется двумя различными генами. Малатдегидрогеназа (МДГ) представлена в различных тканях человека и животных двумя И., один из которых локализован в митохондриях, а другой - в цитоплазме. Оба эти И. различаются по специфичности в отношении НАД и чувствительности к ингибиторам (напр., оксалату). И. изоцитратдегидрогеназы (ИЦДГ; КФ 1.1.1. 41 и 1.1.1.42) различаются по специфичности к коферментам (НАД и НАДФ), а также по субклеточной локализации: НАД-ИЦДГ локализована в митохондриях, а НАДФ-ИЦДГ и в митохондриях, и в цитоплазме. Митохондриальная и цитоплазматическая НАДФ-ИЦДГ различаются между собой по каталитическим, электрофоретическим и иммунохим. свойствам.

Для идентификации и разделения И. используют различные физ.-хим. методы исследования: различные виды электрофореза (см.), адсорбционную и ионообменную хроматографию (см.), гель-фильтрацию (см.) и др. Наиболее широкое распространение как самый доступный получил метод электрофореза в полиакриламидном геле (диск-электрофорез). Различия в электрофоретических свойствах являются основой для классификации многих И. Для обозначения И. приводится сокращенное название фермента с соответствующим подстрочным порядковым номером, который характеризует электрофоретическую подвижность И. при определенном значении pH. Напр., И. лактатдегидрогеназы обозначаются как ЛДГ1, ЛДГ2, ЛДГ3 и т. д.

Биол, значение наличия множественных форм ферментов еще не ясно. Предполагают, что И. играют определенную роль в регуляции метаболических процессов в клетке. Возможно, что И. обеспечивают приспособляемость организма к изменениям окружающей среды и обусловливают специфичность обмена, характерную именно для данной ткани. Поэтому многие ферменты, занимающие ключевые позиции в обмене веществ, имеют И. (ЛДГ, МДГ, ферменты, катализирующие окислительное фосфорилирование, различные аминотрансферазы). Возможно, что различные И. одного и того же фермента специфически катализируют прямую или обратную реакции определенной ферментативной реакции (см. Лактатдегидрогеназа). О важной роли И. в тонкой регуляции метаболических процессов свидетельствует изменение их спектра под влиянием ряда воздействий и физиол, факторов (денервации, различных гормонов, охлаждения, гипоксии и др.). Отмечено изменение в характере распределения различных И. в тканях человека и животных в эмбриогенезе. Однако для изученных ферментов пока не найдено специфических эмбриональных форм И.

Спектр И. в количественном и качественном отношении в различных тканях человека и животных различен и часто строго специфичен. Это имеет большое диагностическое значение. Поскольку биосинтез отдельных И. и их субъединиц контролируется различными генами, предполагают, что видоизменение гена влечет за собой появление атипичных И. в тканях и крови. Т. о., возникает возможность использования определения спектров И. для диагностики генетических аномалий. Ряд патол. процессов, особенно дегенеративно-деструктивного характера, связан с изменением проницаемости клеточных мембран, что является причиной изменения спектра И. в сыворотке крови больного. Поэтому определение И. в крови и тканях человека находит все более широкое применение в клинике. Для решения некоторых вопросов диагностики, патогенеза и терапии ряда заболеваний определение изоферментных спектров имеет существенное преимущество по сравнению с определением общей активности того или иного фермента. Наибольшее диагностическое значение имеет определение изофермент-ного спектра ЛДГ, который меняется при инфаркте миокарда (резко повышается активность ЛДГ1 и ЛДГ2). Изменения спектра И. ЛДГ в сыворотке крови сохраняются дольше, чем изменения суммарной активности фермента, и могут обнаруживаться тогда, когда общая активность ЛДГ возвращается к норме. Отклонения спектра И. ЛДГ от нормы отмечены при заболеваниях гепатобилиарной системы, при мышечных дистрофиях, опухолевых заболеваниях, остром лейкозе, патол, процессах в легких (острые очаговые и крупозная пневмонии, обострение хрон, пневмонии и др.)*

Диагностическим тестом служат также изменения спектров И. и других ферментов, напр, значительное увеличение катодных фракций МДГ (в особенности митохондриальной фракции) в сыворотке крови больных циррозом печени но сравнению с сывороткой крови больных хрон, гепатитом. Определение спектра И. и общей активности МДГ в крови находит широкое применение для диагностики и оценки тяжести асфиксии у новорожденных. Изменения активности И. кислой фосфатазы отмечаются при болезни Гоше (см. Гоше болезнь), раке предстательной железы и множественной миеломе. Для диагностики ряда заболеваний печени используют определение спектра И. щелочной фосфатазы (см. Фосфатазы).

Определение И. аминотрансфераз (см.) также имеет диагностическую ценность. В печени, почках, сердечной мышце человека обнаруживаются два И. аспартат-аминотрансферазы (КФ 2.6.1.1; АсАТ). Один из них локализуется в митохондриях, другой - в цитоплазме клеток. Ок. 79% всей активности АсАТ приходится на долю митохондриального И. и лишь 21% на долю цитоплазматического. При тяжелом течении болезни Боткина в сыворотке крови обнаруживается два И. АсАТ, тогда как в норме и при легком течении заболевания - только один.

При повреждениях скелетной мускулатуры, а также при инфаркте миокарда в сыворотке крови повышается активность креатинкиназы (см.), а также изменяется спектр ее И.

Библиография: Генетика изоферментов, под ред. Д. К. Беляева, М., 1977, библиогр.; Иванов И. И., Коровки н Б. Ф. и М а р к e л о в И. М. Введение в клиническую энзимологии), Л., 1974, библиогр.; Комаров Ф. И., Коровкин Б. Ф. и Меньшиков В. В. Биохимические исследования в клинике, Л., 1976; Ленинджср А. Биохимия, пер. с англ., с. 217 и др., М., 1976; Проблемы медицинской химии, под ред. В. С. Шапота и Э. Г. Ларского, с. 5, М., 1973; У и л к и н с о н Д. Изоферменты, пер. с англ., М., 1968; Успехи биологической химии, под ред. В. Л. Кретовича и др., т. 9, с. 55, М., 1972; Enzyme nomenclature, Amsterdam, 1965; К а р 1 a n N. О. Symposium on multiple forms of enzymes and control mechanisms, Bact. Rev., "v. 27, p. 155, 1963; Latner A. L. Isoenzymes, Advanc. clin. Chem., v. 9, p. 69, 1967.

Л. В. Павлихина.



Что еще почитать