Призма у которой все ребра равны. Объём и площадь поверхности правильной четырёхугольной призмы

Определение 1. Призматическая поверхность
Теорема 1. О параллельных сечениях призматической поверхности
Определение 2. Перпендикулярное сечение призматической поверхности
Определение 3. Призма
Определение 4. Высота призмы
Определение 5. Прямая призма
Теорема 2. Площадь боковой поверхности призмы

Параллелепипед :
Определение 6. Параллелепипед
Теорема 3. О пересечении диагоналях параллелепипеда
Определение 7. Прямой параллелепипед
Определение 8. Прямоугольный параллелепипед
Определение 9. Измерения параллелепипеда
Определение 10. Куб
Определение 11. Ромбоэдр
Теорема 4. О диагоналях прямоугольного параллелепипеда
Теорема 5. Объем призмы
Теорема 6. Объем прямой призмы
Теорема 7. Объем прямоугольного параллелепипеда

Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а ребра, не лежащие в этих гранях, параллельны между собой.
Грани, отличные от оснований, называются боковыми .
Стороны боковых граней и оснований называются ребрами призмы , концы ребер называются вершинами призмы. Боковыми ребрами называются ребра, не принадлежащие основаниям. Объединение боковых граней называется боковой поверхностью призмы , а объединение всех граней называется полной поверхностью призмы. Высотой призмы называется перпендикуляр, опущенный из точки верхнего основания на плоскость нижнего основания или длина этого перпендикуляра. Прямой призмой называется призма, у которой боковые ребра перпендикулярны плоскостям оснований. Правильной называется прямая призма (Рис.3), в основании которой лежит правильный многоугольник.

Обозначения:
l - боковое ребро;
P - периметр основания;
S o - площадь основания;
H - высота;
P ^ - периметр перпендикулярного сечения;
S б - площадь боковой поверхности;
V - объем;
S п - площадь полной поверхности призмы.

V = SH
S п = S б + 2S о
S б = P ^ l

Определение 1 . Призматической поверхностью называется фигура, образованная частями нескольких плоскостей, параллельных одной прямой ограниченными теми прямыми, по которым эти плоскости последовательно пересекаются одна с другой*; эти прямые параллельны между собой и называются рёбрами призматической поверхности .
*При этом предполагается, что каждые две последовательные плоскости пересекаются и что последняя плоскость пересекает первую

Теорема 1 . Сечения призматической поверхности плоскостями, параллельными между собой (но не параллельными её рёбрам), представляют собой равные многоугольники.
Пусть ABCDE и A"B"C"D"E" - сечения призматической поверхности двумя параллельными плоскостями. Чтобы убедиться, что эти два многоугольника равны, достаточно показать, что треугольники ABC и А"В"С" равны и имеют одинаковое направление вращения и что то же имеет место и для треугольников ABD и A"B"D", ABE и А"В"Е". Но соответственные стороны этих треугольников параллельны (например АС параллельно А"С") как линии пересечения некоторой плоскости с двумя параллельными плоскостями; отсюда следует, что эти стороны равны (например АС равно А"С") как противоположные стороны параллелограмма и что углы, образованные этими сторонами, равны и имеют одинаковое направление.

Определение 2 . Перпендикулярным сечением призматической поверхности называется сечение этой поверхности плоскостью, перпендикулярной к её рёбрам. На основании предыдущей теоремы все перпендикулярные сечения одной и той же призматической поверхности будут равными многоугольниками.

Определение 3 . Призмой называется многогранник, ограниченный призматической поверхностью и двумя плоскостями, параллельными между собой (но непараллельными рёбрам призматической поверхности)
Грани, лежащие в этих последних плоскостях, называются основаниями призмы ; грани, принадлежащие призматической поверхности, - боковыми гранями ; рёбра призматической поверхности - боковыми рёбрами призмы . В силу предыдущей теоремы, основания призмы - равные многоугольники . Все боковые грани призмы - параллелограммы ; все боковые рёбра равны между собой.
Очевидно, что если дано основание призмы ABCDE и одно из рёбер АА" по величине и по направлению, то можно построить призму, проводя рёбра ВВ", СС", .., равные и параллельные ребру АА".

Определение 4 . Высотой призмы называется расстояние между плоскостями её оснований (НH").

Определение 5 . Призма называется прямой, если её основаниями служат перпендикулярные сечения призматической поверхности. В этом случае высотой призмы служит, конечно, её боковое ребро ; боковые грани будут прямоугольниками .
Призмы можно классифицировать по числу боковых граней, равному числу сторон многоугольника, служащего её основанием. Таким образом, призмы могут быть треугольные, четырёхугольные, пятиугольные и т.д.

Теорема 2 . Площадь боковой поверхности призмы равна произведению бокового ребра на периметр перпендикулярного сечения.
Пусть ABCDEA"B"C"D"E" - данная призма и abcde - её перпендикулярное сечение, так что отрезки ab, bc, .. перпендикулярны к её боковым ребрам. Грань АВА"В" является параллелограммом; его площадь равна произведению основания АА" на высоту, которая совпадает с аb; площадь грани ВСВ"С" равна произведению основания ВВ" на высоту bc и т. д. Следовательно, боковая поверхность (т. е. сумма площадей боковых граней) равна произведению бокового ребра, иначе говоря, общей длины отрезков АА", ВВ", .., на сумму ab+bc+cd+de+еа.

Определение. Призма - это многогранник, все вершины которого расположены в двух параллельных плоскостях, причем в этих же двух плоскостях лежат две грани призмы, представляющие собой равные многоугольники с соответственно параллельными сторонами, а все ребра, не лежащие в этих плоскостях, параллельны.

Две равные грани называются основаниями призмы (ABCDE, A 1 B 1 C 1 D 1 E 1) .

Все остальные грани призмы называются боковыми гранями (AA 1 B 1 B, BB 1 C 1 C, CC 1 D 1 D, DD 1 E 1 E, EE 1 A 1 A).

Все боковые грани образуют боковую поверхность призмы .

Все боковые грани призмы являются параллелограммами.

Ребра, не лежащие в основаниях, называются боковыми ребрами призмы(AA 1 , BB 1 , CC 1 , DD 1 , EE 1 ).

Диагональю призмы называется отрезок, концами которого служат две вершины призмы, не лежащие на одной ее грани (АD 1).

Длина отрезка, соединяющего основания призмы и перпендикулярного одновременно обоим основаниям,называется высотой призмы .

Обозначение: ABCDE A 1 B 1 C 1 D 1 E 1 . (Сначала в порядке обхода указывают вершины одного основания, а затем в том же порядке - вершины другого; концы каждого бокового ребра обозначают одинаковыми буквами, только вершины, лежащие в одном основании, обозначаются буквами без индекса, а в другом - с индексом)

Название призмы связывают с числом углов в фигуре, лежащей в ее основании, например, на рисунке 1 в основании лежит пятиугольник, поэтому призму называют пятиугольной призмой . Но т.к. у такой призмы 7 граней, то она семигранник (2 грани - основания призмы, 5 граней - параллелограммы, - ее боковые грани)

Среди прямых призм выделяется частный вид: правильные призмы.

Прямая призма называется правильной, если ее основания-правильные многоугольники.

У правильной призмы все боковые грани равные прямоугольники. Частным случаем призмы является параллелепипед.

Параллелепипед

Параллелепипед - это четырехугольная призма, в основании которой лежит параллелограмм (наклонный параллелепипед).Прямой параллелепипед - параллелепипед, у которого боковые ребра перпендикулярны плоскостям основания.

Прямоугольный параллелепипед - прямой параллелепипед, основанием которого является прямоугольник.

Свойства и теоремы:


Некоторые свойства параллелепипеда аналогичны известным свойствам параллелограмма.Прямоугольный параллелепипед, имеющий равные измерения, называются кубом .У куба все грани равные квадраты.Квадрат диагонали, равен сумме квадратов трех его измерений

,

где d - диагональ квадрата;
a - сторона квадрата.

Представление о призме дают:

  • различные архитектурные сооружения;
  • детские игрушки;
  • упаковочные коробки;
  • дизайнерские предметы и т.д.





Площадь полной и боковой поверхности призмы

Площадь полной поверхности призмы называется сумма площадей всех ее гранейПлощадь боковой поверхности называется сумма площадей ее боковых гранейТ.к. основания призмы - равные многоугольник, то их площади равны. Поэтому

S полн = S бок + 2S осн ,

где S полн - площадь полной поверхности,S бок -площадь боковой поверхности, S осн - площадь основания

Площадь боковой поверхности прямой призмы равна произведению периметра основания на высоту призмы .

S бок = P осн * h,

где S бок -площадь боковой поверхности прямой призмы,

P осн - периметр основания прямой призмы,

h - высота прямой призмы, равная боковому ребру.

Объем призмы

Объем призмы равен произведению площади основания на высоту.

Общие сведения о прямой призме

Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований.

Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. на длину бокового ребра.

Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S = a 1 l + a 2 l + ... + a n l = pl,

где a 1 ,а n - длины ребер основания, р - периметр основания призмы, а I - длина боковых ребер. Теорема доказана.

Практическое задание

Задача (22) . В наклонной призме проведено сечение , перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l.

Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 411). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.

Обобщение пройденной темы

А теперь давайте попробуем с вами подвести итоги пройденной темы о призме и вспомним, какими свойствами обладает призма.


Свойства призмы

Во-первых, у призмы все ее основания являются равными многоугольниками;
Во-вторых, у призмы все ее боковые грани являются параллелограммами;
В-третьих, у такой многогранной фигуры, как призма, все боковые ребра равны;

Также, следует вспомнить, что такие многогранники, как призмы могут быть прямыми и наклонными.

Какая призма называется прямой?

Если же у призмы боковое ребро расположено перпендикулярно плоскости ее основания, то такая призма носит название прямой.

Не будет лишним напомнить, что боковые грани прямой призмы являются прямоугольниками.

Какую призму называют наклонной?

А вот если же у призмы боковое ребро не расположено перпендикулярно плоскости ее основания, то можно смело утверждать, что это наклонная призма.

Какую призму называют правильной?



Если у основания прямой призмы лежит правильный многоугольник, то такая призма является правильной.

Теперь вспомним свойства, которыми обладает правильная призма.

Свойства правильной призмы

Во-первых, всегда основаниями правильной призмы служат правильные многоугольники;
Во-вторых, если рассматривать у правильной призмы боковые грани, то они всегда бывают равными прямоугольниками;
В-третьих, если сравнивать размеры боковых ребер, то в правильной призме они всегда равны.
В-четвертых, правильная призма всегда прямая;
В-пятых, если же в правильной призмы боковые грани имеют форму квадратов, то такую фигуру, как правило, называют полуправильным многоугольником.

Сечение призмы

А теперь давайте рассмотрим сечение призмы:



Домашнее задание

А теперь давайте попробуем закрепить изученную тему с помощью решения задач.

Давайте нарисуем наклонную треугольную призму, у которой расстояние между ее ребрами будет равно: 3 см, 4 см и 5 см, а боковая поверхность этой призмы будет равна 60 см2. Имея такие параметры, найдите боковое ребро данной призмы.

А вы знаете, что геометрические фигуры постоянно окружают нас не только на уроках геометрии, но и в повседневной жизни встречаются предметы, которые напоминают ту или иную геометрическую фигуру.



У каждого дома, в школе или на работе имеется компьютер, системный блок которого имеет форму прямой призмы.

Если вы возьмете в руки простой карандаш, то вы увидите, что основной частью карандаша, является призма.

Идя по центральной улице города, мы видим, что у нас под ногами лежит плитка, которая имеет форму шестиугольной призмы.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Призма. Параллелепипед

Призмой называется многогранник, две грани которого – равные n-угольники (основания) , лежащие в параллельных плоскостях, а остальные n граней – параллелограммы (боковые грани) . Боковым ребром призмы называется сторона боковой грани, не принадлежащая основанию.

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой призмой (рис. 1). Если боковые ребра не перпендикулярны плоскостям оснований, то призма называется наклонной . Правильной призмой называется прямая призма, основания которой – правильные многоугольники.

Высотой призмы называется расстояние между плоскостями оснований. Диагональю призмы называется отрезок, соединяющий две вершины, не принадлежащие одной грани. Диагональным сечением называется сечение призмы плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани. Перпендикулярным сечением называется сечение призмы плоскостью, перпендикулярной боковому ребру призмы.

Площадью боковой поверхности призмы называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех граней призмы (т.е. сумма площадей боковых граней и площадей оснований).

Для произвольной призмы верны формулы :

где l – длина бокового ребра;

H – высота;

P

Q

S бок

S полн

S осн – площадь оснований;

V – объем призмы.

Для прямой призмы верны формулы:

где p – периметр основания;

l – длина бокового ребра;

H – высота.

Параллелепипедом называется призма, основанием которой служит параллелограмм. Параллелепипед, у которого боковые ребра перпендикулярны к основаниям, называется прямым (рис. 2). Если боковые ребра не перпендикулярны основаниям, то параллелепипед называется наклонным . Прямой параллелепипед, основанием которого является прямоугольник, называется прямоугольным. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими . Длины ребер, исходящих из одной вершины, называются измерениями параллелепипеда. Так как параллелепипед – это призма, то основные его элементы определяются аналогично тому, как они определены для призм.

Теоремы.

1. Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

2. В прямоугольном параллелепипеде квадрат длины диагонали равен сумме квадратов трех его измерений:

3. Все четыре диагонали прямоугольного параллелепипеда равны между собой.

Для произвольного параллелепипеда верны формулы:

где l – длина бокового ребра;

H – высота;

P – периметр перпендикулярного сечения;

Q – Площадь перпендикулярного сечения;

S бок – площадь боковой поверхности;

S полн – площадь полной поверхности;

S осн – площадь оснований;

V – объем призмы.

Для прямого параллелепипеда верны формулы:

где p – периметр основания;

l – длина бокового ребра;

H – высота прямого параллелепипеда.

Для прямоугольного параллелепипеда верны формулы:

(3)

где p – периметр основания;

H – высота;

d – диагональ;

a,b,c – измерения параллелепипеда.

Для куба верны формулы:

где a – длина ребра;

d – диагональ куба.

Пример 1. Диагональ прямоугольного параллелепипеда равна 33 дм, а его измерения относятся, как 2: 6: 9. Найти измерения параллелепипеда.

Решение. Для нахождения измерений параллелепипеда воспользуемся формулой (3), т.е. тем фактом, что квадрат гипотенузы прямоугольного параллелепипеда равен сумме квадратов его измерений. Обозначим через k коэффициент пропорциональности. Тогда измерения параллелепипеда будут равны 2k , 6k и 9k . Запишем формулу (3) для данных задачи:

Решая это уравнение относительно k , получим:

Значит, измерения параллелепипеда равны 6 дм, 18 дм и 27 дм.

Ответ: 6 дм, 18 дм, 27 дм.

Пример 2. Найти объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной 8 см, если боковое ребро равно стороне основания и наклонено под углом 60º к основанию.

Решение . Сделаем рисунок (рис. 3).

Для того, чтобы найти объем наклонной призмы необходимо знать площадь ее основания и высоту. Площадь основания данной призмы – это площадь равностороннего треугольника со стороной 8 см. Вычислим ее:

Высотой призмы является расстояние между ее основаниями. Из вершины А 1 верхнего основания опустим перпендикуляр на плоскость нижнего основания А 1 D . Его длина и будет высотой призмы. Рассмотрим DА 1 АD : так как это угол наклона бокового ребра А 1 А к плоскости основания, А 1 А = 8 см. Из этого треугольника находим А 1 D :

Теперь вычисляем объем по формуле (1):

Ответ: 192 см 3 .

Пример 3. Боковое ребро правильной шестиугольной призмы равно 14 см. Площадь наибольшего диагонального сечения равна 168 см 2 . Найти площадь полной поверхности призмы.

Решение. Сделаем рисунок (рис. 4)


Наибольшее диагональное сечение – прямоугольник AA 1 DD 1 , так как диагональ AD правильного шестиугольника ABCDEF является наибольшей. Для того, чтобы вычислить площадь боковой поверхности призмы, необходимо знать сторону основания и длину бокового ребра.

Зная площадь диагонального сечения (прямоугольника), найдем диагональ основания.

Поскольку , то

Так как то АВ = 6 см.

Тогда периметр основания равен:

Найдем площадь боковой поверхности призмы:

Площадь правильного шестиугольника со стороной 6 см равна:

Находим площадь полной поверхности призмы:

Ответ:

Пример 4. Основанием прямого параллелепипеда служит ромб. Площади диагональных сечений 300 см 2 и 875 см 2 . Найти площадь боковой поверхности параллелепипеда.

Решение. Сделаем рисунок (рис. 5).

Обозначим сторону ромба через а , диагонали ромба d 1 и d 2 , высоту параллелепипеда h . Чтобы найти площадь боковой поверхности прямого параллелепипеда необходимо периметр основания умножить на высоту: (формула (2)). Периметр основания р = АВ + ВС + CD + DA = 4AB = 4a , так как ABCD – ромб. Н = АА 1 = h . Т.о. Необходимо найти а и h .

Рассмотрим диагональные сечения. АА 1 СС 1 – прямоугольник, одна сторона которого диагональ ромба АС = d 1 , вторая – боковое ребро АА 1 = h , тогда

Аналогично для сечения ВВ 1 DD 1 получим:

Используя свойство параллелограмма такое, что сумма квадратов диагоналей равна сумме квадратов всех его сторон, получим равенство Получим следующее.



Что еще почитать