Могут ли происходить а вынужденные колебания. Вынужденные колебания

Для того чтобы система совершала незатухающие колебания, необходимо извне восполнять потери энергии колебаний на трение. Для того, чтобы энергия колебаний системы не убывала обычно вводят силу, периодически воздействующую на систему (такую силу будем называть вынуждающей , а колебания вынужденными).

ОПРЕДЕЛЕНИЕ : вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы.

Эта сила, как правило, выполняет двоякую роль:

Во-первых, она раскачивает систему и сообщает ей определенный запас энергии;

Во-вторых, она периодически восполняет потери энергии (расход энергии) на преодоление сил сопротивления и трения.

Пусть вынуждающая сила изменяется со временем по закону:

Составим уравнение движения для системы, колеблющейся под воздействием такой силы. Предполагаем, что на систему также действует квазиупругая сила и сила сопротивления среды (что справедливо в предположении малости колебаний).

Тогда уравнение движения системы будет иметь вид:

Или .

Проведя подстановки , , - собственная частота колебаний системы, получим неоднородное линейной дифференциальное уравнение 2 го порядка:

Из теории дифференциальных уравнений известно, что общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения.

Общее решение однородного уравнения известно:

,

где ; a 0 и a - произвольные const.

.

С помощью векторной диаграммы можно убедиться, что такое предположение справедливо, а также определить значения “a ” и “j ”.

Амплитуда колебаний определяется следующим выражением:

.

Значение “j ”, которое представляет собой величину отставания по фазе вынужденного колебания от обусловившей его вынуждающей силы , также определяется из векторной диаграммы и составляет:

.

Окончательно, частное решение неоднородного уравнения примет вид:


(8.18)

Эта функция в сумме с

(8.19)

дает общее решение неоднородного дифференциального уравнения, описывающего поведение системы при вынужденных колебаниях. Слагаемое (8.19) играет заметную роль в начальной стадии процесса, при так называемом установлении колебаний (рис. 8.10).

С течением времени из-за экспоненциального множителя роль второго слагаемого (8.19) все больше уменьшается, и по прошествии достаточного времени им можно пренебречь, сохраняя в решении лишь слагаемое (8.18).

Таким образом, функция (8.18) описывает установившиеся вынужденные колебания. Они представляют собой гармонические колебания с частотой равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (определенных w 0 и b) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отстают по фазе от вынуждающей силы, причем величина отставания “j” также зависит от частоты вынуждающей силы.


Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом , а соответствующая частота - резонансной частотой .

ОПРЕДЕЛЕНИЕ : явление, при котором наблюдается резкое возрастание амплитуды вынужденных колебаний, называется резонансом .

Резонансная частота определяется из условия максимума для амплитуды вынужденных колебаний:

. (8.20)

Тогда, подставив это значение в выражение для амплитуды, получим:

. (8.21)

При отсутствии сопротивления среды амплитуда колебаний при резонансе обращалась бы в бесконечность; резонансная частота при тех же условиях (b = 0) совпадает с собственной частотой колебаний.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (или, что то же самое, от частоты колебаний) можно представить графически (рис. 8.11). Отдельные кривые соответствуют различным значениям “b”. Чем меньше “b”, тем выше и правее лежит максимум данной кривой (см. выражение для w рез.). При очень большом затухании резонанс не наблюдается - с увеличением частоты амплитуда вынужденных колебаний монотонно убывает (нижняя кривая на рис. 8.11).

Совокупность представленных графиков, соответствующих различным значениям b, называется резонансными кривыми .

Замечания по поводу резонансных кривых:

При стремлении w®0 все кривые приходят к одному, отличному от нуля значению, равному . Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы F 0 .

При w®¥ все кривые асимптотически стремятся к нулю, т.к. при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместится из положения равновесия.

Чем меньше b, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» максимум.

Примеры :

Явление резонанса часто оказывается полезным, особенно в акустике и радиотехнике.

Вынужденные колебания

колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше Затухание колебаний в этой системе.

В частности, в линейных колебательных системах (См. Колебательные системы) при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны (рис. ). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.

Амплитуда В. к. определяется амплитудой действующей силы и затуханием в системе. Если затухание мало, то амплитуда В. к. существенно зависит от соотношения между частотой действующей силы и частотой собственных колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает - наступает Резонанс . В нелинейных системах (См. Нелинейные системы) разделение на свободные и В. к. возможно не всегда.

Лит.: Хайкин С. Э., Физические основы механики, М., 1963.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Вынужденные колебания" в других словарях:

    Вынужденные колебания - Вынужденные колебания. Зависимость их амплитуды от частоты внешнего воздействия при различном затухании: 1 слабое затухание; 2 сильное затухание; 3 критическое затухание. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ, колебания, возникающие в какой либо системе в… … Иллюстрированный энциклопедический словарь

    вынужденные колебания - Колебания, происходящие под периодическим воздействием внешней обобщенной силы. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.] вынужденные… … Справочник технического переводчика

    Вынужденные колебания колебания, происходящие под воздействием внешних сил, меняющихся во времени. Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого … Википедия

    ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ, колебания, возникающие в какой либо системе в результате периодически изменяющегося внешнего воздействия: силы в механической системе, напряжения или тока в колебательном контуре. Вынужденные колебания всегда происходят с… … Современная энциклопедия

    Колебания, возникающие в к. л. системе под действием периодич. внеш. силы (напр., колебания мембраны телефона под действием перем. магн. поля, колебания механич. конструкции под действием перем. нагрузки). Хар р В. к. определяется как внеш. силой … Физическая энциклопедия

    Колебания, возникающие в к. л. системе под влиянием перем. внеш. воздействия (напр., колебания напряжения и силы тока в электрич. цепи, вызываемые перем. эдс; колебания механич. системы, вызываемые перем. нагрузкой). Характер В. к. определяется… … Большой энциклопедический политехнический словарь

    Возникают в системе под действием периодического внешнего воздействия (напр., вынужденные колебания маятника под действием периодической силы, вынужденные колебания в колебательном контуре под действием периодической электродвижущей силы). Если… … Большой Энциклопедический словарь

    Вынужденные колебания - (вибрация) – колебания (вибрация) системы, вызванные и поддерживаемые силовым и (или) кинематическим возбуждением. [ГОСТ 24346 80] Вынужденные колебания – колебания систем, вызванные действием переменных во времени нагрузок. [Отраслевой… … Энциклопедия терминов, определений и пояснений строительных материалов

    - (Constrained vibrations, forced vibrations) колебания тела, вызываемые периодически действующей внешней силой. В случае совпадения периода вынужденных колебаний с периодом собственных колебаний тела получается явление резонанса. Самойлов К. И.… … Морской словарь

    ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ - (см.), возникающие в какой либо системе под влиянием внешнего переменного воздействия; их характер определяется как свойствами внешнего воздействии, так и свойствами самой системы. С приближением частоты внешнего воздействия к частоте собственных … Большая политехническая энциклопедия

    Возникают в системе под действием периодического внешнего воздействия (например, вынужденные колебания маятника под действием периодической силы, вынужденные колебания в колебательном контуре под действием периодической эдс). Если частота… … Энциклопедический словарь

Книги

  • Вынужденные колебания кручения валов при учете затухания , А.П. Филиппов , Воспроизведено в оригинальной авторской орфографии издания 1934 года (издательство`Известия академии наук СССР`). В… Категория: Математика Издатель: ЁЁ Медиа , Производитель: ЁЁ Медиа ,
  • Вынужденные поперечные колебания стержней при учете затухания , А.П. Филиппов , Воспроизведено в оригинальной авторской орфографии издания 1935 года (издательство "Известия академии наук СССР")… Категория:

Потери механической энергии в любой колебательной системе из-за  наличия сил трения неизбежны, поэтому без «подкачки» энергии извне колебания будут затухающими. Существует несколько принципиально различных способов создания колебательных систем незатухающих колебаний. Остановимся более подробно на рассмотрении незатухающих колебаний под действием внешней периодической силы . Такие колебания называются вынужденными. Продолжим изучение движения гармонического маятника (рис. 6.9). 

Помимо рассмотренных ранее сил упругости и вязкого трения, на шарик действует внешняя  вынуждающая периодическая сила, изменяющаяся по гармоническому закону

частота, которой может отличаться от собственной частоты колебаний маятника ω o . Природа этой сил в данном случае нам не существенна. Создать такую силу можно различными способами, например, сообщить шарику электрический заряд и поместить его во внешнее переменное электрическое поле. Уравнение движения шарика в рассматриваемом случае имеет вид

Разделим его на массу шарика и используем прежние обозначения параметров системы. В результате получим  уравнение вынужденных колебаний :

где f o = F o /m − отношение амплитудного значения внешней вынуждающей силы к массе шарика. Общее решение уравнения (3) достаточно громоздко и, конечно, зависит от  начальных условий. Характер движения шарика, описываемого уравнением (3), понятен: под действием вынуждающей силы возникнуть колебания, амплитуда которых будет возрастать. Этот переходный режим достаточно сложен и зависит от начальных условий. По прошествии некоторого промежутка времени колебательный режим установится, их амплитуда перестанет изменяться. Именно установившийся режим колебаний , во многих случаях представляет основной интерес. Мы не будем рассматривать переход системы к установившемуся режиму, а сконцентрируем внимание на описании и изучении характеристик этого режима. При такой постановке задачи нет необходимости задавать начальные  условия, так как интересующий нас установившийся режим не зависит от начальных условий, его характеристики полностью определяются самим уравнением. С аналогичной ситуацией мы сталкивались при изучении движения тела под действием постоянной внешней силы и силы вязкого трения 

По прошествии некоторого времени тело движется с постоянной установившейся скоростью  v = F o , которая не зависит от начальных условий, и полностью определяется уравнением движения. Начальные условия определяют режим, переходный к установившемуся движению. На основании здравого смысла разумно предположить, что в установившемся  режиме колебаний шарик будет колебаться с частотой внешней вынуждающей силы. Поэтому решение уравнения (3) следует искать в гармонической функции с частотой вынуждающей силы. Для начала решим уравнение (3), пренебрегая силой сопротивления

Попробуем найти его решение в виде гармонической функции

Для этого вычислим зависимости скорости и ускорения тела от времени, как производные от закона движения 

и подставим их значения в уравнение (4)

Теперь можно сократить на  cosωt . Следовательно, это выражение обращается в верное тождество в любой момент времени, при выполнении условия

Таким образом, наше предположение о решении уравнения (4) в виде (5)  оправдалось: установившийся режим колебаний описывается функцией

Отметим, что коэффициент A согласно полученному выражению (6) может быть, как положительным (при ω < ω o ), так и отрицательным (при ω > ω o ). Изменение знака соответствует изменению фазы колебаний на π (причина такого изменение будет выяснена чуть позже), поэтому амплитудой колебаний является модуль этого коэффициента |A| . Амплитуда установившихся колебаний, как и следовало ожидать, пропорциональна величине вынуждающей силы. Кроме того, эта амплитуда сложным образом зависит от частоты вынуждающей силы. Схематический график этой зависимости показан на рис. 6.10

Рис. 6.10 Резонансная кривая

Как следует из формулы (6) и хорошо видно на графике, при приближении  частоты вынуждающей силы к собственной частоте системы амплитуда резко возрастает. Причина такого возрастания амплитуды понятна: вынуждающая сила «во время» подталкивает шарик, при полном совпадении частот установившейся режим отсутствует − амплитуда возрастает до бесконечности. Конечно, на практике такого бесконечного возрастания наблюдать невозможно: во-первых , это может привести к разрушению самой колебательной системы, во-вторых , при больших амплитудах колебаний нельзя пренебрегать силами сопротивления среды.  Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте колебаний системы называется явлением резонанса . Приступим теперь к поиску решения уравнения вынужденных колебаний с учетом силы сопротивления 

Естественно, что и в этом случае решение следует искать в виде  гармонической функции с частотой вынуждающей силы. Легко заметить, что поиск решения в форме (5) в данном случае не приведет к успеху. Действительно, уравнение (8), в отличие от уравнения (4), содержит скорость частицы, которая описывается функцией синуса. Поэтому, временная часть в уравнении (8) не сократится. Следовательно, решение уравнения (8) следует представить в общей форме гармонической функции

в которой два параметра A o и φ необходимо найти с помощью уравнения (8). Параметр A o является амплитудой вынужденных колебаний, φ − сдвиг фаз между изменяющейся координатой и переменной вынуждающей силой. Используя тригонометрическую формулу для косинуса суммы, функцию (9) можно представить в эквивалентной форме

которая также содержит два параметра B = A o cosφ и C = −A o sinφ , подлежащих определению. Используя функцию (10), запишем явные выражения для зависимостей скорости и ускорения частицы от времени

и подставим в уравнение (8):

Перепишем это выражение в виде 

Для того чтобы равенство (13) выполнялось в любой момент времени  необходимо, чтобы коэффициенты при косинусе и синусе были равны нулю. На основании этого условия получаем два линейных уравнения для определения параметров функции (10):

Решение этой системы уравнений имеет вид 

На основании формулы (10) определяем характеристики вынужденных колебаний: амплитуду 

сдвиг фаз

При малом затухании эта зависимость имеет резкий максимум при приближении частоты вынуждающей силы ω к собственной частоте системы ω o . Таким образом, и в этом случае возможно возникновения резонанса, поэтому построенные зависимости часто называют резонансной кривой. Учет слабого затухания показывает, что амплитуда не возрастает до бесконечности, ее максимальное значение зависит от коэффициента затухания − с возрастанием последнего максимальная амплитуда быстро убывает. Полученная зависимость амплитуды колебаний от частоты вынуждающей силы (16) содержит слишком много независимых параметров ( f o , ω o , γ ) для того, чтобы построить полное семейство резонансных кривых. Как и во многих случаях, эту зависимость можно существенно упростить, перейдя к «безразмерным» переменным. Преобразуем формулу (16) к следующему виду

и обозначим

− относительная частота (отношение частоты вынуждающей силы к собственной частоте колебаний системы);

− относительная амплитуда (отношение амплитуды колебаний к величине отклонения A o = f/ω o 2 при нулевой частоте);

− безразмерный параметр, определяющий величину затухания. Используя эти обозначения, функция (16) существенно упрощается

так как содержит всего один параметр − δ . Однопараметрическое семейство резонансных кривых, описываемых функцией  (16 б) может быть построено, особенно легко с помощью компьютера. Результат такого построения показан на рис. 629.

рис. 6.11

Отметим, что переход к «обычным» единицам измерения может быть проведен элементарным изменением масштаба осей координат.  Следует отметить, что частота вынуждающей силы, при которой амплитуда  вынужденных колебаний максимальна, также зависит от коэффициента затухания, слегка убывая с ростом последнего. Наконец, подчеркнем, что увеличение коэффициента затухания приводит к существенному увеличению ширины резонансной кривой. Возникающий сдвиг фаз между колебаниями точки и вынуждающей силой также  зависит от частоты колебаний и коэффициента их затухания. Более подробно с ролью этого сдвига фаз мы познакомимся при рассмотрении преобразования энергии в процессе вынужденных колебаний.

частота свободных незатухающих колебаний совпадает с собственной частотой, частота затухающих колебаний немного меньше собственной, а частота вынужденных колебаний совпадает с частотой вынуждающей силы, а не собственной частотой.

Вынужденные электромагнитные колебания

Вынужденными называются такие колебания, которые происходят в колебательной системе под влиянием внешнего периодического воздействия.

Рис.6.12. Контур с вынужденными электрическими колебаниями

Рассмотрим процессы, протекающие в электрическом колебательном контуре (рис.6.12 ), присоединенном к внешнему источнику, ЭДС которого изменяется по гармоническому закону

,

где m – амплитуда внешней ЭДС,

 – циклическая частота ЭДС.

Обозначим через U C напряжение на конденсаторе, а через i - силу тока в контуре. В этом контуре кроме переменной ЭДС (t ) действует еще ЭДС самоиндукции L в катушке индуктивности.

ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока в контуре

.

Для вывода дифференциального уравнения вынужденных колебаний возникающих в таком контуре используем второе правило Кирхгофа

.

Напряжение на активном сопротивлении R найдем по закону Ома

.

Cила электрического тока равна заряду протекающему за единицу времени через поперечное сечение проводника

.

Следовательно

.

Напряжение U C на конденсаторе прямо пропорционально заряду на обкладках конденсатора

.

ЭДС самоиндукции можно представить через вторую производную от заряда по времени

.

Подставляя напряжения и ЭДС во второе правило Кирхгофа

.

Разделив обе части этого выражения на L и распределив слагаемые по степени убывания порядка производной, получим дифференциальное уравнение второго порядка

.

Введем следующие обозначения и получим

–коэффициент затухания,

–циклическая частота собственных колебаний контура.

. (1)

Уравнение (1) является неоднородным линейным дифференциальным уравнением второго порядка. Такого типа уравнения описывают поведение широкого класса колебательных систем (электрических, механических) под влиянием внешнего периодического воздействия (внешней ЭДС или внешней силы).

Общее решение уравнения (1) складывается из общего решения q 1 однородного дифференциального уравнения (2)

(2)

и любого частного решения q 2 неоднородного уравнения (1)

.

Вид общего решения однородного уравнения (2) зависит от величины коэффициента затухания . Нас будет интересовать случай слабого затухания <<  0 . При этом общее решение уравнения (2) имеет вид

где B и 0 – постоянные, задаваемые начальными условиями.

Решение (3) описывает затухающие колебания в контуре. Входящие в (3) величины:

–циклическая частота затухающих колебаний;

–амплитуда затухающих колебаний;

–фаза затухающих колебаний.

Частное решение уравнения (1) ищем в виде гармонического колебания, происходящего с частотой, равной частоте внешнего периодического воздействия – ЭДС, и отстающего по фазе на от него

где
– амплитуда вынужденных колебаний, зависящая от частоты.

Подставим (4) в (1) и получим тождество

Чтобы сравнить фазы колебаний, используем тригонометрические формулы приведения

.

Тогда наше уравнение перепишется в виде

Представим колебания в левой части полученного тождества в виде векторной диаграммы (рис .6.13)..

Третье слагаемое, соответствующее колебаниям на емкости С , имеющее фазу (t ) и амплитуду
, изобразим горизонтальным вектором, направленным вправо.

Рис.6.13. Векторная диаграмма

Первое слагаемое левой части, соответствующие колебаниям на индуктивности L , изобразится на векторной диаграмме вектором, направленным горизонтально влево (его амплитуда
).

Второе слагаемое, соответствующие колебаниям на сопротивлении R , изобразим вектором, направленным вертикально вверх (его амплитуда
), т. к. его фаза на/2 отстает от фазы первого слагаемого.

Так как сумма трех колебаний слева от знака равно дает гармоническое колебание
, то векторная сумма на диаграмме (диагональ прямоугольника) изображает колебание с амплитудойи фазойt , которая на опережает фазу колебаний третьего слагаемого.

Из прямоугольного треугольника по теореме Пифагора можно найти амплитуду A ()

(5)

и tg как отношение противолежащего катета к прилежащему катету.

. (6)

Следовательно, решение (4) с учетом (5) и (6) примет вид

. (7)

Общее решение дифференциального уравнения (1) является суммой q 1 и q 2

. (8)

Формула (8) показывает, что при воздействии на контур периодической внешней ЭДС в нем возникают колебания двух частот, т.е. незатухающие колебания с частотой внешней ЭДС и затухающие колебания с частотой
. Амплитуда затухающих колебаний
со временем становится пренебрежимо малой, и в контуре остаются только вынужденные колебания, амплитуда которых не зависит от времени. Следовательно, установившиеся вынужденные колебания описываются функцией (4). То есть в контуре возникают вынужденные гармонические колебания, с частотой, равной частоте внешнего воздействия, и амплитудой
, зависящей от этой частоты (рис. 3а ) по закону (5). При этом по фазе вынужденное колебание отстает на от вынуждающего воздействия.

Продифференцировав выражение (4) по времени, найдем силу тока в контуре

где
– амплитуда силы тока.

Запишем это выражение для силы тока в виде

, (9)

где
сдвиг по фазе между током и внешней ЭДС .

В соответствии с (6) и рис. 2

. (10)

Из этой формулы следует, что сдвиг по фазе между током и внешней ЭДС зависит, при постоянном сопротивлении R , от соотношения между частотой вынуждающей ЭДС и собственной частотой контура 0 .

Если < 0 , то сдвиг по фазе между током и внешней ЭДС < 0. Колебания силы тока опережают колебания ЭДС по фазе на угол .

Если > 0 , тогда > 0. Колебания силы тока отстают от колебаний ЭДС по фазе на угол .

Если = 0 (резонансная частота ), то = 0, т. е. сила тока и ЭДС колеблются в одинаковой фазе.

Резонанс – это явление резкого возрастания амплитуды колебаний при совпадении частоты внешней, вынуждающей силы с собственной частотой колебательной системы.

При резонансе = 0 и период колебаний

.

Учитывая, что коэффициент затухания

,

получим выражения для добротности при резонансе Т = Т 0

,

с другой стороны

.

Амплитуды напряжений на индуктивности и емкости при резонансе можно выразить через добротность контура

, (15)

. (16)

Из (15) и (16) видно, что при = 0 , амплитуда напряжения на конденсаторе и индуктивности в Q раз больше амплитуды внешней ЭДС. Это свойство последовательного RLC контура используется для выделения радиосигнала определенной частоты
из спектра радиочастот при перестройке радиоприемника.

На практике RLC контура связаны с другими контурами, измерительными приборами или усилительными устройствами, вносящими дополнительное затухание в RLC контур. Поэтому реальная величина добротности нагруженного RLC контура оказывается ниже величины добротности, оцениваемой по формуле

.

Реальная величина добротности может быть оценена как

Рис.6.14. Определение добротности по резонансной кривой

,

где f – ширина полосы частот, в которых амплитуда составляет 0,7 от максимального значения (рис. 4).

Напряжения на конденсаторе U C , на активном сопротивлении U R и на катушке индуктивности U L достигают максимума при различных частотах, соответственно

,
,
.

Если затухание мало 0 >> , то все эти частоты практически совпадают и можно считать что

.

Вынужденными называются такие колебания, которые возникают в колебательной системе под действием внешней периодически изменяющейся силы. Эта сила, как правило, выполняет двоякую роль: во-первых, она раскачивает систему и сообщает ей определенный запас энергии; во-вторых, она периодически восполняет потери энергии (расход энергии) на преодоление сил сопротивления и трения.

Пусть вынуждающая сила изменяется со временем по закону:

Составим уравнение движения для системы, колеблющейся под воздействием такой силы. Предполагаем, что на систему также действует квазиупругая сила и сила сопротивления среды (что справедливо в предположении малости колебаний). Тогда уравнение движения системы будет иметь вид:

Проведя подстановки, - собственная частота колебаний системы, получим неоднородное линейной дифференциальное уравнение 2 го порядка:

Из теории дифференциальных уравнений известно, что общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения.

Общее решение однородного уравнения известно:

С помощью векторной диаграммы можно убедиться, что такое предположение справедливо, а также определить значения “a” и “j”.

Амплитуда колебаний определяется следующим выражением:

Значение “j”, которое представляет собой величину отставания по фазе вынужденного колебания от обусловившей его вынуждающей силы, также определяется из векторной диаграммы и составляет:

Окончательно, частное решение неоднородного уравнения примет вид:

Эта функция в сумме дает общее решение неоднородного дифференциального уравнения, описывающего поведение системы при вынужденных колебаниях. Слагаемое (2) играет заметную роль в начальной стадии процесса, при так называемом установлении колебаний (рис. 1). С течением времени из-за экспоненциального множителя роль второго слагаемого (2) все больше уменьшается, и по прошествии достаточного времени им можно пренебречь, сохраняя в решении лишь слагаемое (1).

Рис 1.

Таким образом, функция (1) описывает установившиеся вынужденные колебания. Они представляют собой гармонические колебания с частотой равной частоте вынуждающей силы. Амплитуда вынужденных колебаний пропорциональна амплитуде вынуждающей силы. Для данной колебательной системы (определенных w 0 и b) амплитуда зависит от частоты вынуждающей силы. Вынужденные колебания отстают по фазе от вынуждающей силы, причем величина отставания “j” также зависит от частоты вынуждающей силы. Детлаф А.А., Яворский Б.М. Курс физики: учебное пособие для втузов. - 4-е изд., испр. - М.: Высш. шк., 2012. - 428 с.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы приводит к тому, что при некоторой определенной для данной системы частоте амплитуда колебаний достигает максимального значения. Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при этой частоте. Это явление называется резонансом, а соответствующая частота - резонансной частотой.

В целом ряде случаев колебательная система совершает колебания под действием внешней силы, работа которой периодически возмещает потерю энергии на трение и другие сопротивления. Частота таких колебаний зависит не от свойств самой колеблющейся системы, а от частоты изменения периодической силы, под действием, которой система совершает свои колебания. В этом случае мы имеем дело с вынужденными колебаниями, т. е. с колебаниями, навязанными нашей системе действием внешних сил.

Источники возмущающих сил, следовательно, и вынужденных колебаний, весьма разнообразны.

Остановимся на характере возмущающих сил, встречающихся в природе и в технике. Как уже указывалось, электрические машины, паровые или газовые турбины, быстровращающиеся маховики и т.д. из-за несбалансированности вращающихся масс вызывают колебания роторов, перекрытий фундаментов зданий и т.д. Поршневые машины, к которым относятся двигатели внутреннего сгорания и паровые машины, из-за происходящего возвратно-поступательного движения некоторых частей (например, поршня), выхлопа газов или пара, являются источником периодических возмущающих сил.

Обычно возмущающие силы увеличиваются с ростом числа оборотов машины, поэтому исключительно важное значение приобретает борьба с вибрациями в быстроходных машинах. Она осуществляется часто путем создания специального упругого фундамента или устройством упругой подвески машины. Если машина жестко укреплена на фундаменте, то возмущающие силы, действующие на машину, почти целиком передаются на фундамент и далее через грунт на здание, в котором машина установлена, а также на рядом расположенные сооружения.

Для того чтобы уменьшить действие неуравновешенных сил на основание, необходимо, чтобы собственная частота колебаний машины на упругом основании (прокладке) была значительно ниже частоты возмущающих сил, определяемой числом оборотов машины.

Причиной вынужденных колебаний судна, качки кораблей являются волны, набегающие периодически на плавающее судно. Кроме качки корабля в целом под действием волнения воды, наблюдаются также вынужденные колебания (вибрация) отдельных частей корпуса судна. Причиной таких вибраций является неуравновешенность главного двигателя судна, вращающего гребной винт, а также вспомогательных механизмов (насосов, динамо-машин и т.п.). Во время работы судовых механизмов возникают силы инерции неуравновешенных масс, частота повторения которых зависит от числа оборотов машины. Кроме того, вынужденные колебания судна могут быть вызваны периодическим воздействием лопастей гребного винта на корпус судна. Зоммерфельд А., Механика. Ї Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. Ї168 с.

Вынужденные колебания моста могут быть вызваны идущей по нему в ногу группой людей. Колебания железнодорожного моста могут возникнуть под действием спарников, соединяющих ведущие колеса проходящего паровоза. К причинам, вызывающим вынужденные колебания подвижного железнодорожного состава (электровоза, паровоза или тепловоза, и вагонов), относятся периодически повторяющиеся удары колес о стыки рельсов. Вынужденные колебания автомобилей вызываются повторяющимися ударами колес о неровности дорожного покрова. Вынужденные колебания лифтов и подъемных клетей шахт происходят вследствие неравномерности работы подъемной машины, вследствие неправильной формы барабанов, на которые наматываются канаты, и т.п. Причинами, вызывающими вынужденные колебания проводов электропередач, высоких зданий, мачт и дымовых труб могут быть порывы ветра.

Особый интерес представляют вынужденные колебания самолетов, которые могут вызываться различными причинами. Здесь, прежде всего, следует иметь в виду вибрацию самолета, вызываемую работой винтомоторной группы. Вследствие неуравновешенности кривошипно-шатунного механизма, работающих двигателей и вращающихся воздушных винтов возникают периодические толчки, поддерживающие вынужденные колебания.

Наряду с колебаниями, вызываемыми действием рассмотренных выше внешних периодических сил, в самолетах отмечаются и внешние воздействия другого характера. В частности, возникают вибрации, связанные с плохой обтекаемостью передней части самолета. Плохое обтекание надстроек на крыле или неплавное соединение крыла с фюзеляжем (корпусом) самолета приводит к вихре образованиям. Вихри воздуха, отрываясь, создают пульсирующий поток, бьющий по хвостовому оперению и вызывающий его тряску. Такая тряска самолета наступает при определенных режимах полета и проявляется в виде толчков, происходящих не вполне регулярно, через 0,5-1 секунду.

Такого рода колебания, связанные, главным образом, с вибрацией частей самолета вследствие завихрения при обтекании крыла и других передних частей самолета, называют «баффтингом». Явление баффтинга, вызванное срывом потоков с крыла, особенно опасно, когда период ударов по хвостовой части самолета близок к периоду свободных колебаний оперения или фюзеляжа самолета. В этом случае колебания типа «баффтинг» резко возрастают.

Весьма интересные случаи баффтинга наблюдались при сбрасывании десанта с крыла самолета. Появление людей на крыле приводило к вихреобразованиям, вызывающим вибрации самолета. Другой случай появления баффтинга оперения на двухместном самолете был вызван тем, что в задней кабине сидел пассажир и выступающей головой способствовал вихреобразованию в потоке воздуха. При отсутствии пассажира в задней кабине никаких колебаний не наблюдалось.

Важное значение имеют также изгибные колебания воздушного винта, вызываемые возмущающими силами аэродинамического характера. Эти силы возникают вследствие того, что винт при вращении за каждый оборот дважды проходит мимо передней кромки крыла. Скорости же потока воздуха в непосредственной близости от крыла и на некотором удалении от него различны, а потому и аэродинамические силы, действующие на воздушный винт, должны периодически изменяться дважды за каждый оборот винта. Это обстоятельство и служит причиной возбуждения поперечных колебаний лопастей винта.

1. Выясним, какие превращения энергии происходят при колебаниях пружинного маятника (см. рис. 80). При растяжении пружины ее потенциальная энергия увеличивается и при максимальном растяжении имеет значение E п = .

При движении груза к положению равновесия потенциальная энергия пружины уменьшается, а кинетическая энергия груза увеличивается. В положении равновесия кинетическая энергия груза максимальна E к = , а потенциальная энергия пружины равна нулю.

При сжатии пружины увеличивается ее потенциальная энергия и уменьшается кинетическая энергия груза. При максимальном сжатии потенциальная энергия пружины максимальна, а кинетическая энергия груза равна нулю.

Если пренебречь силой трения, то в любой момент времени сумма потенциальной и кинетической энергий остается неизменной

E = E п + E к = const.

При наличии силы трения энергия расходуется на совершение работы против этой силы, амплитуда колебаний уменьшается и колебания затухают.

Таким образом, свободные колебания маятника, происходящие за счет первоначального запаса энергии, всегда затухающие .

2. Возникает вопрос, что нужно сделать для того, чтобы колебания с течением времени не прекращались. Очевидно, для получения незатухающих колебаний необходимо компенсировать потери энергии. Это можно сделать разными способами. Рассмотрим один из них.

Вы хорошо знаете, что колебания качелей не будут затухать, если их постоянно подталкивать, т. е. действовать на них с некоторой силой. В этом случае колебания качелей уже не являются свободными, они будут происходить под действием внешней силы. Работа этой внешней силы как раз и восполняет потери энергии, вызванные трением.

Выясним, какой должна быть внешняя сила? Предположим, что модуль и направление силы постоянны. Очевидно, в этом случае колебания прекратятся, потому что тело, пройдя положение равновесия, не будет в него возвращаться. Следовательно, модуль и направление внешней силы должны периодически изменяться.

Таким образом,

вынужденными колебаниями называют колебания, происходящие под действием внешней, периодически изменяющейся силы.

Вынужденные колебания, в отличие от свободных, могут происходить с любой частотой. Частота вынужденных колебаний равна частоте изменения действующей на тело силы, в данном сдучае называется вынуждающей.

3. Проделаем опыт. Подвесим к веревке, закрепленной в стойках, несколько маятников разной длины (рис. 82). Отклоним маятник A от положения равновесия и предоставим его самому себе. Он будет совершать свободные колебания, действуя с некоторой периодической силой на веревку. Веревка в свою очередь будет действовать на остальные маятники. В результате все маятники начнут совершать вынужденные колебания с частотой колебаний маятника A .

Мы увидим, что все маятники начнут колебаться с частотой, равной частоте колебаний маятника A . Однако их амплитуда колебаний, кроме маятника C , будет меньше, чем амплитуда колебаний маятника A . Маятник же C , длина которого равна длине маятника A , будет раскачиваться очень сильно. Следовательно, наибольшую амплитуду колебаний имеет маятник, собственная частота колебаний которого совпадает с частотой вынуждающей силы. В этом случае говорят, что наблюдается резонанс .

Резонансом называют явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты вынуждающей силы с собственной частотой колебательной системы (маятника).

Резонанс можно наблюдать при колебании качелей. Теперь вы можете объяснить, что качели будут сильнее раскачиваться, если их подталкивать в такт с их собственными колебаниями. В этом случае частота внешней силы равна частоте колебаний качелей. Любой толчок против движения качелей вызовет уменьшение их амплитуды.

4 * . Выясним, какие преобразования энергии происходят при резонансе.

Если частота вынуждающей силы отличается от собственной частоты колебаний тела, то вынуждающаяя сила будет направлена то по направлению движения тела, то против него. Соответственно работа этой силы будет то отрицательной, то положительной. В целом же работа вынуждающей силы в этомслучае незначительно изменяет энергию системы.

Пусть теперь частота внешней силы равна собственной частоте колебаний тела. В этом случае направление вынуждающей силы совпадает с направлением скорости тела, а сила сопротивления компенсируется внешней силой. Тело колеблется только под действием внутренних сил. Иначе говоря, отрицательная работа против силы сопротивления равна положительной работе внешней силы. Поэтому колебания происходят с максимальной амплитудой.

5. Явление резонанса необходимо учитывать в практике. В частности, станки, машины совершают во время работы небольшие колебания. Если частота этих колебаний совпадает с частотой собственных колебаний отдельных частей машин, то амплитуда колебаний может оказаться очень большой. Машина или опора, на которой она стоит, разрушится.

Известны случаи, когда вследствие резонанса разваливался на части самолет в воздухе, ломались гребные винты у судов, рушились железнодорожные рельсы.

Не допустить резонанса можно, изменяя либо собственную частоту системы, либо частоту силы, вызывающей колебания. С этой целью, например, солдаты, переходя через мост, идут не в ногу, а вольным шагом. В противном случае частота их шагов может совпасть с частотой собственных колебаний моста и он разрушится. Так произошло в 1750 г. во Франции, когда через мост длиной102 м, висящий на цепях, проходил отряд солдат. Подобный случай произошел и в Петербурге в 1906 г. При переходе по Египетскому мосту через реку Фонтанку кавалерийского эскадрона частота четкого шага лошадей совпала с частотой колебаний моста.

Для предотвращения резонанса поезда переезжают мосты на медленном или на очень быстром ходу, чтобы частота ударов колес о стыки рельсов была значительно меньше или значительно больше частоты собственных колебаний моста.

Явление резонанса не всегда оказывается вредным. Иногда оно может быть полезным, поскольку позволяет получить с помощью даже небольшой силы большое увеличение амплитуды колебаний.

На явлении резонанса основано действие прибора, позволяющего измерять частоту колебаний. Этот прибор называется частотомером . Его работу можно проиллюстрировать следующим опытом. На центробежной машине закрепляют модель частотомера, которая состоит из набора пластин (язычков) разной длины(рис. 83). На концах пластин имеются жестяные флажки, покрытые белой краской. Можно заметить, что при изменении скорости вращения ручки машины разные пластины приходят в колебание. Колебаться начинают те пластины, собственная частота которых равна частоте вращения.

Вопросы для самопроверки

1. От чего зависит амплитуда свободных колебаний пружинного маятника?

2. Сохраняется ли постоянной амплитуда колебаний маятника при наличии сил трения?

3. Какие превращения энергии происходят при колебаниях пружинного маятника?

4. Почему свободные колебания являются затухающими?

5. Какие колебания называют вынужденными? Приведите примеры вынужденных колебаний.

6. Что называют резонансом?

7. Приведите примеры вредного проявления резонанса. Что нужно сделать, чтобы не допускать резонанс?

8. Приведите примеры использования явления резонанса.

Задание 26

1. Заполните таблицу 14, записав в нее, какая сила действует на колебательную систему, если она совершает свободные или вынужденные колебания; чему равны частота и амплитуда этих колебаний; являются они затухающими или нет.

Таблица 14

Характеристика колебаний

Вид колебаний

Свободные

Вынужденные

Действующая сила

Частота

Амплитуда

Затухание

2 э. Предложите опыт для наблюдения вынужденных колебаний.

3 э. Изучите экспериментально явление резонанса, используя для этого изготовленные вами математические маятники.

4. При некоторой скорости вращения колеса швейной машины стол, на котором она стоит, иногда сильно раскачивается. Почему?



Что еще почитать