Методы и средства обеспечения комфортных условий жизнедеятельности. Принципы, методы и средства обеспечения безопасности

Эффективным средством обеспечения надлежащей чистоты и допустимых параметров микроклимата воздуха в помещениях является вентиляция. Вентиляцией называется организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения загрязненного воздуха и подачу на его место свежего.

По способу перемещения воздуха различают системы естественной и механической вентиляции. Система вентиляции, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давления снаружи и внутри здания, называется естественной вентиляцией.

Неорганизованная естественная вентиляция - инфильтрация, или естественное проветривание, осуществляется сменой воздуха в помещениях через неплотности в ограждениях и элементах строительных конструкций благодаря разности давления снаружи и внутри помещения. Такой воздухообмен зависит от случайных факторов: силы и направления ветра, температуры воздуха внутри и снаружи здания, вида ограждений и качества строительных работ. Инфильтрация может быть значительной для жилых зданий и достигать 0,5-0,75 объема помещения в час, а для промышленных предприятий - до 1-1,5 ч.

Для постоянного воздухообмена, требуемого по условиям поддержания чистоты воздуха в помещении, необходима организованная вентиляция (аэрация).

Аэрацией называется организованная естественная общеобменная вентиляция помещений в результате поступления и удаления воздуха через открывающиеся фрамуги окон и фонарей. Воздухообмен в помещении регулируют различной степенью открывания фрамуг в зависимости от температуры наружного воздуха, скорости и направления ветра. Как способ вентиляции аэрация нашла широкое применение в промышленных зданиях, характеризующихся технологическими процессами с большими тепловыделениями (прокатных, литейных, кузнечных цехах).

Основным достоинством аэрации является возможность осуществлять большие воздухообмены без затрат механической энергии. К недостаткам аэрации следует отнести то, что в теплый период года эффективность аэрации может существенно падать вследствие повышения температуры наружного воздуха и того, что поступающий в помещение воздух не очищается и не охлаждается.

Вентиляция, с помощью которой движение воздуха осуществляется по системам каналов с использованием побудителей, называется механической вентиляцией.

Механическая вентиляция по сравнению с естественной имеет ряд преимуществ: большой радиус действия вследствие значительного давления, создаваемого вентилятором; возможность изменять или сохранять необходимый воздухообмен независимо от температуры наружного воздуха и скорости ветра; возможность подвергать вводимый в помещение воздух предварительной очистке или увлажнению, подогреву или охлаждению; возможность организовать оптимальное воздухораспределение с подачей воздуха непосредственно к рабочим местам; возможность улавливать вредные выделения непосредственно в местах их образования и предотвращать их распространение по всему объему помещения, а также возможность очищать загрязненный воздух перед выбросом его в атмосферу. К недостаткам механической вентиляции следует отнести значительную стоимость сооружения и ее эксплуатации и необходимость проведения мероприятий но борьбе с шумом.

Системы механической вентиляции подразделяются на общественные, местные, смешанные, аварийные и системы кондиционирования.

Общеобменная вентиляция предназначена для ассимиляции избыточной теплоты, влаги и вредных веществ во всем объеме рабочей зоны помещений. Она применяется в том случае, если вредные выделения поступают непосредственно в воздух помещения, рабочие места не фиксированы, а располагаются по всему помещению. Обычно объем воздуха £пр, подаваемого в помещение при общеобменной вентиляции, равен объему воздуха £в, удаляемого из помещения. Однако в ряде случаев возникает необходимость нарушить это равенство (рис. 4.1). Так, в особо чистых производствах, для которых большое значение имеет отсутствие пыли, объем притока воздуха делается больше объема вытяжки, за счет чего создается некоторый избыток давления р в производственном помещении, что исключает попадание пыли из соседних помещений. В общем случае разница между объемами приточного и вытяжного воздуха не должна превышать 10-15%.

Рис. 4.1.

Циркуляция воздуха в помещении и соответственно концентрация примесей и распределение параметров микроклимата зависят не только от наличия приточных и вытяжных струй, но и от их взаимного расположения. Различают четыре основные схемы организации воздухообмена при общеобменной вентиляции: сверху вниз (рис. 4.2, я), сверху вверх (рис. 4.2, б); снизу вверх (рис. 4.2, в); снизу вниз (рис. 4.2, г). Кроме этих схем, применяют комбинированные. Наиболее равномерное распределение воздуха достигается в том случае, когда приток равномерен по ширине помещения, а вытяжка сосредоточена.

При организации воздухообмена в помещениях необходимо учитывать и физические свойства вредных паров и газов, и в первую очередь их плотность. Если плотность газов ниже плотности воздуха, то удаление загрязненного воздуха происходит в верхней зоне, а подача свежего - непосредственно в рабочую зону. При выделении газов с плотностью, большей плотности воздуха, из нижней части помещения удаляется 60-70% и из верхней части - 30-40% загрязненного воздуха. В помещениях со значительными выделениями

Рис. 4.2.

влаги вытяжка влажного воздуха осуществляется в верхней зоне, а подача свежего в количестве 60% - в рабочую зону и 40% - в верхнюю зону.

По способу подачи и удаления воздуха различают четыре схемы общеобменной вентиляции (рис. 4.3): приточная, вытяжная, приточно-вытяжная и с системой с рециркуляцией.

По приточной системе воздух подается в помещение после подготовки его в приточной камере. В помещении при этом создается избыточное давление, за счет которого воздух уходит наружу через окна, двери или в другие помещения. Приточную систему применяют для вентиляции помещений, в которые нежелательно попадание загрязненного воздуха из соседних помещений или холодного воздуха извне.

Установки приточной вентиляции (рис. 4.3, а) обычно составляют из следующих элементов: воздухозаборного устройства / для забора чистого воздуха; воздуховодов 2, по которым воздух подается в помещение, фильтров 3 для очистки воздуха от пыли, калориферов 4, в которых подогревается холодный наружный воздух; побудителя движения 5, увлажнителя-осушителя 6, приточных отверстий или насадков 7, через которые воздух распределяется по помещению.

Рис. 4.3.

а - приточная вентиляция (ПВ); б - вытяжная вентиляция (ВВ); в - приточно-вытяжная вентиляция с рециркуляцией

Воздух из помещения удаляется через неплотности ограждающих конструкций.

Вытяжная система предназначена для удаления воздуха из помещения. При этом в нем создается пониженное давление и воздух соседних помещений или наружный воздух поступает в данное помещение. Вытяжную систему целесообразно применять в том случае, если вредные выделения данного помещения не должны распространяться на соседние, например, для вредных цехов, химических лабораторий.

Установки вытяжной вентиляции (рис. 4.3, б) состоят из вытяжных отверстий или насадков 8, через которые воздух удаляется из помещения; побудителя движения 5, воздуховодов 2; устройств для очистки воздуха от пыли или газов 9, устанавливаемых для защиты атмосферы, и устройства для выброса воздуха 10, которое располагается на 1 - 1,5 м выше конька крыши. Чистый воздух поступает в производственное помещение через неплотности ограждающих конструкциях, что является недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

Приточно-вытяжная вентиляция - наиболее распространенная система, при которой воздух подается в помещение приточной системой, а удаляется вытяжной; системы работают одновременно.

В отдельных случаях для сокращения расходов на нагревание воздуха применяют системы вентиляции с частичной рециркуляцией (рис. 4.3, в). В них к поступающему снаружи воздуху подмешивают воздух, отсасываемый из помещения II вытяжной системой. Количество свежего и вторичного воздуха регулируют клапанами 11 н 12. Свежая порция воздуха в таких системах обычно составляет 20-10% общего количества подаваемого воздуха. Систему вентиляции с рециркуляцией разрешается использовать только для тех помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности (см. параграф 3.2 табл. 3.4) и концентрация их в воздухе, подаваемом в помещение, не превышает 30% предельно допустимой концентрации (Спдк)- Применение рециркуляции не допускается в том случае, если в воздухе помещений содержатся болезнетворные бактерии, вирусы или имеются резко выраженные неприятные запахи.

Отдельные установки общеобменной механической вентиляции могут не включать всех указанных выше элементов. Например, приточные системы не всегда оборудуются фильтрами и устройствами для изменения влажности воздуха, а иногда приточные и вытяжные установки могут не иметь сети воздуховодов.

Расчет необходимого воздухообмена при общеобменной вентиляции производят исходя из условий производства и наличия избыточной теплоты, влаги и вредных веществ. Для качественной оценки эффективности воздухообмена применяют понятие кратности воздухообмена Ка - отношение количества воздуха, поступающего в помещение в единицу времени Ь (м3/ч), к объему вентилируемого помещения V, (м3). При правильно организованной вентиляции кратность воздухообмена должна быть значительно больше единицы.

При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции применяют в зависимости от объема помещения, приходящегося на одного работающего. Отсутствие вредных выделений - это такое их количество в технологическом оборудовании, при одновременном выделении которых в воздухе помещения концентрация вредных веществ не превысит предельно допустимую. В производственных помещениях с объемом воздуха на каждого работающего Ун1 < 20 м3 расход воздуха на одного работающего Ьх должен быть не менее 30 м3/ч. В помещении с Ки1 = 20-40 м3I, > 20 м2/ч. В помещениях с УпХ > 40 м3 и при наличии естественной вентиляции воздухообмен не рассчитывают. В случае отсутствия естественной вентиляции (герметичные кабины) расход воздуха на одного работающего должен составлять не менее 60 м3/ч. Необходимый воздухообмен для всего производственного помещения в целом равен

где п - число работающих в данном помещении.

При определении требуемого воздухообмена для борьбы с теплоизбытками составляют баланс явной теплоты помещения, исходя из которого рассчитывается объем воздуха для теплоизбытков Д<2из6:

где рдр - плотность приточного воздуха, кг/м; £ух, £пр - температура уходящего и приточного воздуха, °С; ср - удельная теплоемкость, кДж/кг-м3;

где бвр - интенсивность образования вредных веществ, мг/ч; СцдК, С"р - концентрации вредных веществ в пределах ПДК и в приточном воздухе.

Концентрация вредных веществ в приточном воздухе должна быть по возможности минимальной и не превышать 30% ПДК.

Необходимый воздухообмен для удаления избыточной влаги определяют исходя из материального баланса по влаге и при отсутствии в производственном помещении местных отсосов по формуле

где (гвп - количество водяного пара, выделяющегося в помещение, г/ч; р"р - плотность воздуха, поступающего в помещение, кг/м; йух - допустимое содержание водяного пара в воздухе помещения при нормативной температуре и относительной влажности воздуха, г/кг; с!пр - влагосодержание приточного воздуха, г/кг.

При одновременном выделении в рабочую зону вредных веществ, не обладающих однонаправленным действием на организм человека, например, теплоты и влаги, необходимый воздухообмен оценивают по наибольшему количеству воздуха, полученному в расчетах для каждого вида произведенных выделений.

При одновременном выделении в воздух рабочей зоны нескольких вредных веществ однонаправленного действия (серный и сернистый ангидрид; оксиды азота совместно с оксидом углерода и др., см. СН 245-71) расчет общеобменной вентиляции надлежит производить путем суммирования объемов воздуха, необходимых для разбавления каждого вещества в отдельности до его условных предельно допустимых концентраций (С,), учитывающих загрязнения воздуха другими веществами. Эти концентрации меньше нормативных СПдК и определяются из уравнения У "" < 1.

С помощью местной вентиляции необходимые метеорологические параметры создаются на отдельных рабочих местах. Например, улавливание вредных веществ непосредственно у источника возникновения, вентиляции кабин наблюдения и т.д. Наиболее широкое распространение находит местная вытяжная локализующая вентиляция. Основной метод борьбы с вредными выделениями заключается в устройстве и организации отсосов из укрытий.

Конструкции местных отсосов могут быть полностью закрытыми, полуоткрытыми или открытыми (рис. 4.4). Наиболее эффективны закрытые отсосы. К ним относятся кожухи, камеры, герметично или плотно укрывающие технологическое оборудование (рис. 4.4, а). Если такие укрытия устроить невозможно, то применяют отсосы с частичным укрытием или открытые: вытяжные зоны, отсасывающие панели, вытяжные шкафы, бортовые отсосы и др.

Один из самых простых видов местных отсосов - вытяжной зонт (рис. 4.4, ж). Он служит для улавливания вредных веществ, имеющих меньшую плотность, чем окружающий воздух. Зонты устанавливают над ваннами различного назначения, электрическими и индукционными печами и над отверстиями для выпуска металла и шлака из вагранок. Зонты делают открытыми со всех сторон и частично открытыми с одной, двух и трех сторон. Эффективность работы вытяжного зонта зависит от размеров, высоты подвеса и угла его раскрытия. Чем больше размеры и чем ниже установлен зонт над местом выделения веществ, тем он эффективнее. Наиболее равномерное всасывание обеспечивается при угле раскрытия зонта не менее 60°.

Отсасывающие панели (рис. 4.4, в) применяют для удаления выделений, увлекаемых конвективными токами, при таких ручных операциях, как электросварка, пайка, газовая сварка, резка металла т.п. Вытяжные шкафы (рис. 4.4, е) - наиболее эффективное устройство по сравнению с другими отсосами, так как почти полностью укрывают источник выделения вредных веществ. Незакрытыми в шкафах остаются лишь проемы для обслуживания, через которые воздух из помещения поступает в шкаф. Форму проема выбирают в зависимости от характера технологических операций.

Необходимый воздухообмен в устройствах местной вытяжной вентиляции рассчитывают исходя из условия локализации примесей, выделяющихся из источника образования. Требуемый часовой объем отсасываемого воздуха определяют как произведение площади приемных отверстий отсоса Р(м2) па скорость воздуха в них. Скорость воздуха в проеме отсоса

Рис. 4.4.

а - укрытие-бокс; б - бортовые отсосы (1 - однобортовой, 2 - двухбортовой); в - боковые отсосы (1 - односторонний, 2 - угловой); г - отсос от рабочих столов; д - отсос витражного типа;

е - вытяжные шкафы (1-е верхним отсосом, 2-е нижним отсосом, 3 - с комбинированным отсосом); ж - вытяжные зонты (1 - прямой, 2 - наклонный)

V (м/с) зависит от класса опасности вещества и типа воздухоприемника местной вентиляции (г) = 0,5^-5 м/с).

Смешанная система вентиляции является сочетанием элементов местной и общеобменной вентиляции. Местная система удаляет вредные вещества из кожухов и укрытий машин. Однако часть вредных веществ через неплотности укрытий проникает в помещение. Эта часть удаляется общеобменной вентиляцией.

Аварийная вентиляция предусматривается в тех производственных помещениях, в которых возможно внезапное поступление в воздух большого количества вредных или взрывоопасных веществ. Производительность аварийной вентиляции определяют в соответствии с требованиями нормативных документов в технологической части проекта. Если такие документы отсутствуют, то производительность аварийной вентиляции принимается такой, чтобы она вместе с основной вентиляции включалась автоматически при достижении ПДК вредных выделений или при остановке одной из систем общеобменной или местной вентиляции. Выброс воздуха аварийных систем должен осуществляться с учетом возможности максимального рассеивания вредных и взрывоопасных веществ в атмосфере.

Для создания оптимальных метеорологических условий в производственных помещениях применяют наиболее совершенный вид промышленной вентиляции - кондиционирование воздуха. Кондиционированием воздуха называется его автоматическая обработка с целью поддержания в производственных помещениях заранее заданных метеорологических условий независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании автоматически регулируется температура воздуха, его относительная влажность и скорость подачи в помещение в зависимости от времени года, наружных метеорологических условий и характера технологического процесса в помещении. Такие строго определенные параметры воздуха создаются в специальных установках, называемых кондиционерами. В ряде случаев помимо обеспечения санитарных норм микроклимата воздуха в кондиционерах производят специальную обработку: ионизацию, дезодорацию, озонирование и т.п.

Кондиционеры могут быть местными (для обслуживания отдельных помещений) и центральными (для обслуживания нескольких отдельных помещений). Принципиальная схема кондиционера представлена на рис. 4.5.

Наружный воздух очищается от пыли в фильтре 2 и поступает в камеру I, где он смешивается с воздухом из помещения (при рециркуляции). Пройдя через ступень предварительной температурной обработки 4, воздух поступает в камеру II, где проходит специальную обработку (промывку воздуха водой, обеспечивающую заданные параметры относительной влажности, и очистку воздуха), и в камеру III (температурная обработка). При температурной обработке зимой воздух подогревается частично за счет температуры воды, поступающей в форсунки 5, и частично, проходя через калориферы 4 и 7. Летом воздух охлаждается частично подачей в камеру II охлажденной (артезианской) воды и, главным образом, в итоге работы специальных холодильных машин.

Кондиционирование воздуха играет существенную роль не только с точки зрения безопасности жизнедеятельности, но и необходимо во многих высокотехнологических производствах, поэтому оно в последние годы находит все более широкое применение на промышленных предприятиях. Неблагоприятное влияние избытка или недостатка тепла может быть в значительной мере снижено или исключено совершенствованием техпроцессов, применением автоматизации и механизации, а также использованием ряда санитарно-технических и организационных мероприятий: локализация тепловыделений, теплоизоляция поверхностей нагрева, экранирование, воздушное и водовоздушное душирование, воздушные оазисы, воздушные завесы, рациональный режим труда и отдыха.

В любом случае мероприятия должны обеспечивать облученность на рабочих местах не более 350 Вт/м2 и температуру поверхности оборудования не выше 308 К (35 °С) при температуре внутри источника до 373 К (100 °С) и не выше 318 К (45 °С) при температурах внутри источника выше 373 К (100 °С).

Рис. 4.5.

1 - заборный воздуховод; 2 - фильтр; 3 - соединительный воздуховод; 4 - калорифер; 5 - форсунки увлажнителя воздуха; 6 - каплеуловитель; 7 - калорифер второй ступени; 8 - вентилятор; 9 - отводной воздуховод

При нефиксированных рабочих местах и работе на открытом воздухе в холодных климатических условиях организуют специальные помещения для обогревания. При неблагоприятных метеорологических условиях (температуре воздуха -10 °С и ниже) обязательны перерывы на обогрев продолжительностью 10-15 мин каждый час.

При температуре наружного воздуха (-30)-(-45) °С 15-минутные перерывы на отдых организуются каждые 60 мин от начала рабочей смены и после обеда, а затем каждые 45 мин работы. В помещения для обогрева необходимо предусматривать возможность питья горячего чая.

Примерная программа дисциплины Безопасность жизнедеятельности для всех специальностей среднего профессионального образования 2000 г. Освещение использование световой энергии солнца и искусственных источников света для обеспечения зрительного восприятия окружающего мира. При освещении производственных помещений используют: естественное освещение создаваемое прямыми солнечными лучами и рассеянным светом небосвода и меняющимся в зависимости от географической широты времени года и суток степени облачности и прозрачности атмосферы;...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


PAGE 11

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО Тамбовский государственный технический университет

(Многопрофильный колледж)

Кафедра "Безопасность жизнедеятельности"

Утверждаю

Заведующий кафедрой

Л.А.Харкевич

«_____»____________2013 года

Экз. №__

Методическая разработка

для проведения занятия по дисциплине «Безопасность жизнедеятельности»

Тема 1.6: Обеспечение комфортных условий жизнедеятельности. Производственное освещение.

Лекция № 3

ТАМБОВ – 2013

Учебные цели: 1. Рассмотреть виды производственного освещения, его основные характеристики и нормирование освещения для производственных помещений .

2. Ознакомить обучающихся с рациональной организацией рабочего места.

Учебные вопросы:

1. Основные характеристики освещения

2. Виды производственного освещения

3. Рациональная организация рабочего места.

Вид занятия – лекция.

Время – 2 часа (90 мин).

Место – учебный класс.

Литература:

1. Примерная программа дисциплины «Безопасность жизнедеятельности» для всех специальностей среднего профессионального образования, 2000 г.

2. Рабочая программа дисциплины.

3. Безопасность жизнедеятельности. Учебник для студентов средних профессиональных учебных заведений / С.В.Белов, В.А. Девисилов и др. – М. : Высш. шк., 2000.

4. А. Т. Смирнов , . А. Дурнев , Крючек , Шахраманьян . Безопасность жизнедеятельности: учебное пособие. (2005 г.)

5. Ресурсы Интернет.

Введение

Большое количество информации (до 80 %), получаемой человеком из внешнего мира, поступает через зрительный канал.

Качество получаемой информации, получаемой посредством зрения, во многом зависит от освещения. Освещение — использование световой энергии солнца и искусственных источников света для обеспечения зрительного восприятия окружающего мира .

При освещении производственных помещений используют:

естественное освещение,

искусственное освещение , создаваемое электрическими источниками света, и

совмещенное освещение , при котором недостаточное по нормам естественное освещение дополняют искусственным.

Правильно спроектированное и выполненное производственное освещение улучшает условия зрительной работы, снижает утомляемость, способствует повышению производительности труда и качества выпускаемой продукции, благоприятно влияет на производственную деятельность, что оказывает положительное воздействие на работающего, повышает безопасность труда и снижает травматизм.

1 вопрос. Основные светотехнические характеристики освещения

К видимому излучению оптического спектра относят излучение с длиной волны 380 – 780 нм (3,7 ·10 14 7,7· 10 14 Гц). В этом диапазоне волны определенной длины (монохроматический свет) вызывают цветовое ощущение.

Освещение характеризуют следующие величины.

Световой поток Ф – видимая часть оптического излучения, которая воспринимается зрением человека как свет.

Единицей измерения светового потока является люмен (лм). Один люмен - это световой поток, излучаемый точечным источником с силой света 1 кандела (кд) в телесном угле в 1 стерадиан (ср) .

Сила света I – пространственная плотность светового потока в направлении телесного угла ∆ w

I = ∆ Ф / ∆ w

Единицей измерения силы света является кандела (кд). Одна кандела это сила света, испускаемая в перпендикулярном направлении с площади 1/600 000 м 2 черного тела при температуре затвердевания платины Т = 2045 К и давлении 101325 Па (1атм).

Телесный угол w - часть пространства, заключенная внутри конической поверхности. Измеряется отношением площади, вырезаемой им из сферы произвольного радиуса к квадрату последнего.

Единицей измерения телесного угла является стерадиан (ср). Если S = r 2 , то ω = 1 ср.

Освещенность E – поверхностная плотность светового потока. Определяется как отношение светового потока ∆ Ф , равномерно падающую на освещаемую поверхность, к ее площади ∆ S (м).

Е = Ф / S

Единица освещенности – люкс (лк). Один лк – это освещенность 1 м 2 поверхности при падении на нее светового потока в 1 лм, т. е. 1 лк = 1 лм / м 2

Яркость L поверхности под углом a к нормали — это отношение силы света ∆ I , излучаемой, освещаемой или светящейся поверхностью в этом направлении, к площади ∆ S проекции этой поверхности, на плоскость, перпендикулярную к этому направлению

L = ∆ I / (∆ S cos a )

Измеряется в кд / м 2 .

Для качественной условий зрительной работы используют такие показатели как: - фон, - контракт объекта с фоном, - коэффициент пульсации освещенности, - спектральный состав света.

Фон - это поверхность, на которой происходит различение объекта. Фон характеризуется способностью поверхности отражать падающий на нее световой поток. Это способность (коэффициент отражения ρ ) определяется как отношение отраженного от поверхности светового потока Ф отр к падающему на нее световому потоку Ф пад :

ρ = Ф отр / Ф пад

В зависимости от цвета и фактуры поверхности значения коэффициента отражения находятся в пределах 0,02 – 0,95;

при ρ > 0,4 – фон считается светлым;

при ρ= 0,2 … 0,4 – средним;

при ρ < 0,2 - темным.

Контраст объекта с фоном k — степень различения объекта и фона - характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, знака, пятна, трещины, риски или других элементов) и фона:

k =(L ор - L о ) / L ор

Считается большим, если k > 0,5 (объект резко выделяется на фоне),

Средним при k = 0,2…0,5 (объект и фон заметно отличаются по яркости),

Малым при k < 0,2 (объкт слабо заметен на фоне).

Коэффициент пульсации освещенности – критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током

k Е = 100 (Е мах –Е м in ) / (2Е ср )

где Е max , Е min , Е ср - максимальное, минимальное и среднее значения освещенности за период колебаний:

Для газоразрядных ламп k Е = 25 – 65 %,

Для обычных ламп накаливания – k Е = 7 %,

Для галогенных ламп накаливания - k Е = 1 %,

2 вопрос. Системы и виды производственного освещения

При освещении производственных помещений используют естественное освещение, создаваемое прямыми солнечными лучами и рассеянным светом небосвода и меняющимся в зависимости от географической широты, времени года и суток, степени облачности и прозрачности атмосферы; искусственное освещение, создаваемое электрическими источниками света, и совмещенное освещение, при котором недостаточное по нормам естественное освещение дополняют искусственным.

Конструктивно естественное освещение подразделяют на боковое (одно- и двухстороннее), осуществляемое через световые проемы в наружных стенах; верхнее — через световые проемы в кровле и перекрытиях; комбинированное — сочетание верхнего и бокового освещения.

Искусственное освещение по конструктивному исполнению может быть двух видов — общее и комбинированное .

Систему общего освещения применяют в помещениях, где по всей площади выполняются однотипные работы (литейные, сварочные, гальванические цехи), а также в административных, конторских и складских помещениях. Различают общее равномерное освещение (световой поток распределяется равномерно по всей площади без учета расположения рабочих мест) и общее локализованное освещение (с учетом расположения рабочих мест).

При выполнении точных зрительных работ (например, слесарных, токарных, контрольных) в местах, где оборудование создает глубокие, резкие тени или рабочие поверхности расположены вертикально (штампы, гильотиннные ножницы), наряду с общим освещением применяют местное .

Совокупность местного и общего освещения называют комбинированным освещением . Применение одного местного освещения внутри производственных помещений не допускается, поскольку образуются резкие тени, зрение быстро утомляется и создается опасность производственного травматизма.

По функциональному назначению искусственное освещение подразделяют на рабочее, аварийное и специальное , которое может быть охранным, дежурным, эвакуационным, эритемным, бактерицидным и др.

Рабочее освещение предназначено для обеспечения нормального выполнения производственного процесса, прохода людей, движения транспорта и является обязательным для всех производственных помещений.

Аварийное освещение устраивают для продолжения работы в тех случаях, когда внезапное отключение рабочего освещения (при авариях) и связанное с этим нарушение нормального обслуживания оборудования могут вызвать взрыв, пожар, отравление людей, нарушение технологического процесса и т. д. Минимальная освещенность рабочих поверхностей при аварийном освещении должна составлять 5 % нормируемой освещенности рабочего освещения, но не менее 2 лк.

Эвакуационное освещение предназначено для обеспечения эвакуации людей из производственного помещения при авариях и отключении рабочего освещения; организуется в местах, опасных для прохода людей: на лестничных клетках, вдоль основных проходов производственных помещений, в которых работают более 50 чел. Минимальная освещенность на полу основных проходов и на ступеньках при эвакуационном освещении должна быть не менее 0,5 лк, на открытых территориях — не менее 0,2 лк .

Охранное освещение устраивают вдоль границ территорий, охраняемых специальным персоналом. Наименьшая освещенность в ночное время 0,5 лк.

Сигнальное освещение применяют для фиксации границ опасных зон; оно указывает на наличие опасности, либо на безопасный путь эвакуации.

Основные требования к производственному освещению . Основной задачей производственного освещения является поддержание на рабочем месте освещенности, соответствующей характеру зрительной работы

При организации производственного освещения необходимо обеспечить равномерное распределение яркости на рабочей поверхности и окружающих предметах. Перевод взгляда с ярко освещенной на слабо освещенную поверхность вынуждает глаз переадаптироваться, что ведет к утомлению зрения и соответственно к снижению производительности труда. Для повышения равномерности естественного освещения больших цехов осуществляется комбинированное освещение. Светлая окраска потолка, стен и оборудования способствует равномерному распределению яркостей в поле зрения работающего.

Производственное освещение должно обеспечивать отсутствие в поле зрения работающего резких теней. Наличие резких теней искажает размеры и формы объектов различения и тем самым повышает утомляемость, снижает производительность труда. Особенно вредны движущиеся тени, которые могут привести к травме.

Колебания освещенности на рабочем месте, вызванные, например, резким изменением напряжения в сети, обусловливают переадаптацию глаза, приводя к значительному утомлению. Постоянство освещенности во времени достигается стабилизацией плавающего напряжения, жестким креплением светильников, применением специальных схем включения газоразрядных ламп.

При организации производственного освещения следует выбирать необходимый спектральный состав светового потока. Это требование особенно существенно для обеспечения правильной цветопередачи, а в отдельных случаях для усиления цветовых контрастов. Оптимальный спектральный состав обеспечивает естественное освещение. Для создания правильной цветопередачи применяют монохроматический свет, усиливающий одни цвета и ослабляющий другие.

Осветительные установки должны быть удобны и просты в эксплуатации, долговечны, отвечать требованиям эстетики, электробезопасности, а также не должны быть причиной возникновения взрыва или пожара. Обеспечение указанных требований достигается применением защитного зануления или заземления, ограничением напряжения питания переносных и местных светильников, защитой элементов осветительных сетей от механических повреждений и т. п.

Правильно спроектированное и рационально выполненное освещение производственных помещений оказывает положительное психофизиологическое воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, сохраняет высокую работоспособность .

Требования к освещению в быту менее жесткие, чем на производстве. Согласно СПиН 23-05—95 «Естественное и искусственное освещение» освещенность в жилых комнатах и на кухнях должна быть не менее 50 лк На лестничных клетках допускается освещенность менее 100 лк. В качестве искусственных источников света в бытовых условиях широко применяются лампы накаливания.

Нормирование производственного освещения . Естественное и искусственное освещение в помещениях регламентируется СНиП 23-05—95 в зависимости от характера зрительной работы, системы и вида освещения, фона, контраста объекта с фоном. Характеристика зрительной работы определяется наименьшим размером объекта различения (например, при работе с приборами — толщиной линии градуировки шкалы, при чертежных работах — толщиной самой тонкой линии). В зависимости от размера объекта различения все виды работ, связанные со зрительным напряжением, делятся на восемь разрядов, которые в свою очередь в зависимости от фона и контраста объекта фоном делятся на четыре подразряда.

Искусственное освещение нормируется количественными (минимальной освещенностью Е min ) и качественными показателями (показателями ослепленности и дискомфорта, коэффициентом пульсации освещенности k Е ). Принято раздельное нормирование искусственного освещения в зависимости от применяемых источников света и системы освещения. Нормативное значение освещенности для газоразрядных ламп при прочих равных условиях из-за их большей светоотдачи выше, чем для ламп накаливания. При комбинированном освещении доля общего освещения должна быть не менее 10 % нормируемой освещенности. Эта величина должна быть не менее 150 лк для газоразрядных ламп и 50 лк для ламп накаливания.

Естественное освещение характеризуется тем, что создаваемая освещенность изменяется в зависимости от времени суток, года, метеорологических условий. Поэтому в качестве критерия оценки естественного освещения принята относительная величина — коэффициент естественной освещенности КЕО , не зависящий от вышеуказанных параметров. КЕО — это отношение освещенности в данной точке внутри помещения Е вн к одновременному значению наружной горизонтальной освещенности Е н , создаваемой светом полностью открытого небосвода, выраженное в процентах, т. е. КЕО = 100 Е вн /Е н.

Источники света и светильники

Источники света, применяемые для искусственного освещения, делят на две группы — газоразрядные лампы и лампы накаливания.

Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити.

В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.]

При выборе и сравнении источников света друг с другом пользуются следующими параметрами : номинальное напряжение питания U (В); электрическая мощность лампы Р (Вт); световой поток, излучаемый лампой Ф (лм), или максимальная сила света I (кд); световая отдача φ =Ф/Р (лм/Вт), т. е. отношение светового потока лампы к ее электрической мощности; срок службы лампы и спектральный состав света.

Благодаря удобству в эксплуатации, простоте в изготовлении, низкой инерционности при включении, отсутствии дополнительных пусков устройств, надежности работы при колебаниях напряжения и при различных метеорологических условиях окружающей среды лампы накаливания находят широкое применение в промышленности. Наряду с отмеченными преимуществами лампы накаливания имеют и существенные недостатки : низкая световая отдача (для ламп общего назначения φ = 7...20 лм/Вт), сравнительно малый срок службы (до 2,5 тыс. ч), в спектре преобладают желтые и красные лучи что сильно отличает их спектральный состав от солнечного света.

Основным преимуществом газоразрядных ламп перед лампами накаливания является большая световая отдача 40.. 110 лм/Вт. Они имеют значительно больший срок службы, который у некоторых типов ламп достигает 8... 12 тыс. ч. От газоразрядных ламп можно получить световой поток любого желаемого спектра, подбирая соответствующим образом инертные газы, пары металлов, люминофоры. По спектральному составу видимого света различают лампы дневного света (ЛД), дневного света с улучшенной цветопередачей (ЛЛД), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого цвета (ЛБ).

Основным недостатком газоразрядных ламп является пульсация светового потока, что может привести к появлению стробоскопического эффекта, заключающегося в искажении зрительного восприятия. При кратности или совпадении частоты пульсации источника света и обрабатываемых изделий вместо одного предмета видны изображения нескольких, искажается направление и скорость движения, что делает невозможным выполнение производственных операций и ведет к увеличению вероятности травматизма. К недостаткам газоразрядных ламп следует отнести также длительный период разгорания; необходимость применения специальных пусковых приспособлений, облегчающих зажигание ламп; зависимость работоспособности от температуры окружающей среды. Газоразрядные лампы могут создавать радиопомехи, исключение которых требует специальных устройств.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников. Электрический светильник — это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Для характеристики светильника с точки зрения распределения светового потока в пространстве строят график силы света в полярной системе координат (рис. 2.8). Степень предохранения глаз работников от слепящего действия источника света определяют защитным углом светильника. Защитный угол — это угол между горизонталью, соединяющей нить накала (поверхность лампы) с противоположным краем отражателя (рис. 2.9). Важной характеристикой светильника является его коэффициент полезного действия отношение фактического светового потока светильника Ф фп , к световому потоку помещенной в него лампы Ф п , т. е. η = Ф фп /Ф фп По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.

3 вопрос. Рациональная организация рабочего места.

В профилактике утомления в последние десятилетия возникло новое направление — эргономика. Эта комплексная дисциплина основана на использовании данных ряда наук для приспособления работы к человеку с целью повышения производительности труда, сохранения здоровья, обеспечения безопасности и комфорта при работе. Одним из основных направлений эргономики является соблюдение физиологических и психологических требований человека при конструировании машин и другого оборудования, организации и планировки рабочих мест.

При конструировании машин должны быть предусмотрены меры по устранению лишних движений работающего, ликвидации наклонов туловища и переходов.

Правильное расположение и компоновка рабочего места, обеспечение удобной позы и свободы трудовых движений, использование оборудования, отвечающего требованиям эргономики и инженерной психологии, обеспечивают наиболее эффективный трудовой процесс, уменьшают утомляемость и предотвращают опасность возникновения профессиональных заболеваний.

Оптимальная поза человека в процессе трудовой деятельности обеспечивает высокую работоспособность и производительность труда. Неправильное положение тела на рабочем месте приводит к быстрому возникновению статической усталости, снижению качества и скорости выполняемой работы, а также к снижению реакции на опасности. Нормальной рабочей позой следует считать такую, при которой работнику не требуется наклоняться вперед больше чем на 10... 15°; наклоны назад и в стороны нежелательны; основное требование к рабочей позе — прямая осанка.

Выбор рабочей позы зависит от мышечных усилий во время работы, точности и скорости движений, а также от характера выполняемой работы. При усилиях не более 50 Н можно выполнять работу сидя. При усилиях 50... 100 Н работа может выполняться с одинаковым физиологическим эффектом как стоя, так и сидя. При усилиях более 100 Н желательно работать стоя.

Работа стоя целесообразнее при необходимости постоянных передвижений, связанных с настройкой и наладкой оборудования. Она создает максимальные возможности для обзора и свободных движений. Однако при работе стоя повышается нагрузка на мышцы нижних конечностей, повышается напряжение мышц, в связи с высоким расположением центра тяжести, и увеличиваются энергозатраты на 6... 10 % по сравнению с позой сидя.

Работа в позе сидя более рациональна и менее утомительна, так как уменьшается высота центра тяжести над площадью опоры, повышается устойчивость тела, снижается напряжение мышц, уменьшается нагрузка на сердечно-сосудистую систему. В положении сидя обеспечивается возможность выполнять работу, требующую точности движения. Однако в этом случае могут возникать застойные явления в органах таза, затруднение работы органов кровообращения и дыхания.

Смена позы приводит к перераспределению нагрузки на группы мышц, улучшению условий кровообращения, ограничивает монотонность. Поэтому, где это совместимо с технологией и условиями производства, необходимо предусматривать выполнение работы как стоя, так и сидя с тем, чтобы рабочие по своему усмотрению могли изменять положение тела.

При организации производственного процесса следует учитывать антропометрические и психофизиологические особенности человека, его возможности в отношении величины усилий, темпа и ритма выполняемых операций, а также анатомо-физиологические различия между мужчинами и женщинами.

Размерные соотношения на рабочем месте при работе стоя строятся с учетом того, что рост мужчин и женщин в среднем отличается на 11,1 см, длина вытянутой в сторону руки — на 6,2 см, длина вытянутой вперед руки — на 5,7 см, длина ноги — на 6,6 см, высота глаз над уровнем пола —на 10,1 см. На рабочем месте в позе сидя различия в размерных соотношениях у мужчин и женщин выражаются в том, что в среднем длина тела мужчин на 9,8 см и высота глаз над сиденьем — на 4,4 см больше, чем у женщин.

На формирование рабочей позы в положении сидя влияет высота рабочей поверхности, определяемая расстоянием от пола до горизонтальной поверхности, на которой совершаются трудовые движения. Высоту рабочей поверхности устанавливают в зависимости от характера, тяжести и точности работ. Оптимальная рабочая поза при работе сидя обеспечивается также конструкцией стула: размерами, формой, площадью и наклоном сиденья, регулировкой по высоте. Основные требования к размерам и конструкции рабочего стула в зависимости от вида выполняемых работ приведены в ГОСТ 12.2.032—78 и ГОСТ 21 889—76’.

Существенное влияние на работоспособность оператора оказывает правильный выбор типа и размещения органов и пультов управления машинами и механизмами. При компоновке постов и пультов управления необходимо знать, что в горизонтальной плоскости зона обзора без поворота головы составляет 120, с поворотом —225°; оптимальный угол обзора по горизонтали без поворота головы —30 ..40° (допустимый 600:), е поворотом — 130°. Допустимый угол обзора по горизонтали оси зрения составляет 130°, оптимальный — 30° вверх и 40° вниз.

Приборные панели следует располагать так, чтобы плоскости лицевых частей индикаторов были перпендикулярны линиям взора оператора, а необходимые органы управления находились в пределах досягаемости. Наиболее важные органы управления следует располагать спереди и справа от оператора. Максимальные размеры зоны досягаемости правой рукой —70…110 см. Глубина рабочей панели не должна превышать 80 см. Высота пульта, предназначенного для работы сидя и стоя, должна быть 75...85 см. Панель пульта может быть наклонена к горизонтальной плоскости на 10...20°, наклон спинки кресла при положении сидя 0... 10°.

Для лучшего различия органов управления они должны быть разными по форме и размеру, окрашиваться в разные цвета либо иметь маркировку или соответствующие надписи. При группировке нескольких рычагов в одном месте необходимо, чтобы их рукоятки имели различную форму. Это позволяет оператору различать их на ощупь и переключать рычаги, не отрывал глаз от работы.

Применение ножного управления дает возможность уменьшить нагрузку на руки и таким образом снизить общую утомляемость оператора. Педали следует применять для включения, пуска и остановки при частоте этих операций не более 20 в минуту, когда требуется большая сила переключения и не слишком большая точность установки органа управления в новом положении. При конструировании ножного управления учитывают характер движения ног, необходимые усилие, частоту движения, общее рабочее положение тела, ход педали. Наружная поверхность педали должна быть рифленой на ширину 60... 100 мм, рекомендуемое усилие —50...100 Н.

Цветовое оформление производственного интерьера. Рациональное цветовое оформление производственного интерьера —действенный фактор улучшения условий труда и жизнедеятельности человека. Установлено, что цвета могут воздействовать на человека по-разному: одни цвета успокаивают, а другие раздражают. Например, красный цвет — возбуждающий, горячий, вызывает у человека условный рефлекс, направленный на самозащиту. Оранжевый воспринимается людьми так же, как горячий, он согревает, бодрит, стимулирует к активной деятельности. Желтый —теплый, веселый, располагает к хорошему настроению. Зеленый — цвет покоя и свежести, успокаивающе действует на нервную систему, а в сочетании с желтым благотворно влияет на настроение. Синий и голубой цвета свежи и прозрачны, кажутся легкими, воздушными. Под их воздействием уменьшается физическое напряжение, они могут регулировать ритм дыхания, успокаивать пульс. Черный цвет — мрачный и тяжелый, резко снижает настроение. Белый цвет —холодный, однообразный, способный вызвать апатию.

Разностороннее эмоциональное воздействие цвета на человека позволяет широко использовать его в гигиенических целях. Поэтому при оформлении интерьера производственного помещения цвет используют как композиционное средство, обеспечивающее гармоническое единство помещения и технологического оборудования, как фактор, создающий оптимальные условия зрительной работы и способствующий повышению работоспособности; как средство информации, ориентации и сигнализации для обеспечения безопасности труда.

Поддержание рациональной цветовой гаммы в производственных помещениях достигается правильным выбором осветительных установок, обеспечивающих необходимый световой спектр. В процессе эксплуатации осветительных установок необходимо предусматривать регулярную очистку от загрязнений светильников и остекленных проемов, своевременную замену отработавшей свой срок службы лампы, контроль напряжений питания осветительной сети, регулярную и рациональную окраску стен, потолка, оборудования.

Сроки очистки светильников и остекления зависят от степени запыленности помещения: для помещений с незначительными выделениями пыли —2 раза в год; со значительным выделением пыли — 4... 12 раз в год. для удобства и безопасности очистки осветительных установок применяют передвижные тележки, телескопические лестницы, подвесные люльки. При высоте подвеса светильников до 5 м допускается обслуживание их с приставных лестниц и стремянок. Очищать светильники следует при отключенном электропитании.

Другие похожие работы, которые могут вас заинтересовать.вшм>

14769. Обеспечение комфортных условий жизнедеятельности. Микроклимат производственных помещений 2.84 MB
Под микроклиматом производственных помещений понимается климат окружающей человека внутренней среды этих помещений который определяется действующими на организм человека сочетаниями температуры влажности и скорости движения воздуха а также температуры окружающих его поверхностей. Отвод теплоты от тела человека в окружающую среду Q осуществляется конвекцией Qконв в результате нагрева воздуха омывающего тело человека инфракрасным излучением на окружающие поверхности с более низкой температурой Qизл испарением влаги с поверхности кожи...
6012. Производственное освещение и его виды 163.84 KB
Освещение является одним из важнейших производственных условий работы. Через зрительный аппарат человек получает порядка 90 % информации. От освещения зависит утомление работающего, производительность труда, его безопасность.
21049. Средства и методы этапа реализации поставленных задач, использование созданных комфортных условий для осуществления деятельности 22.04 KB
Происходящие в настоящее время изменения в экономике остро ставят вопрос о повышении роли физической культуры и спорта в укреплении здоровья граждан. Специалисты народного образования выходящие из стен вуза должны быть подготовлены к внедрению физической культуры и спорта среди учащейся молодёжи должны глубоко понимать их положительное влияние на укрепление здоровья нации. Практика физического воспитания студентов вузов особенно педагогических должна носить опережающий характер так как...
402. АНАЛИЗ УСЛОВИЙ ЖИЗНЕДЕЯТЕЛЬНОСТИ 48.67 KB
Безопасность жизнедеятельности это область знаний в которой изучаются природа опасностей угрожающих человеку и окружающему миру закономерности их формирования и проявления способы предупреждения проявления опасностей защиты от них и ликвидации их последствий. в процессе жизнедеятельности постоянно взаимодействуют друг с другом. Все элементы окружающей человека среды формируют тот феномен который получил название условия жизнедеятельности т.
521. Обеспечение оптимальных микроклиматических условий 4.97 KB
Обеспечение оптимальных микроклиматических условий Эффективным средством обеспечения надлежащей чистоты и допустимых параметров микроклимата воздуха рабочей зоны является промышленная вентиляция. Вентиляцией называется организованный и регулируемый воздухообмен обеспечивающий удаление из помещения загрязненного воздуха и подачу на его место свежего. Для создания оптимальных метеорологических условий в производственных помещениях применяют наиболее совершенный вид промышленной вентиляции кондиционирование воздуха. Кондиционированием воздуха...
634. Обеспечение здоровых и безопасных условий труда на лесохозяйственном предприятии 8.41 KB
Обеспечение здоровых и безопасных условий труда на лесохозяйственном предприятии. Основной целью управления безопасностью труда является организация работы по обеспечению безопасности снижению травматизма и аварийности профессиональных заболеваний улучшению условий труда на основе комплекса задач по созданию безопасных и безвредных условий труда. Задачи: создание системы законодательных и нормативых правовых актов в области охраны труда; надзор и контроль за соблюдением законодательных и нормативно правовых актов; оценка и анализ...
15901. Обеспечение безопасных условий труда на производстве на примере компании ООО Русская пробка 284.1 KB
Вред здоровью человека может нанести и его трудовая деятельность, и разные виды отдыха и развлечений и даже обучение. Мы можем говорить о том, что любая деятельность человека является потенциально опасной. Абсолютно безопасной просто не существует.
21819. Создание комфортных условии при поступлении ребенка в ДОУ 38.26 KB
Учет психических и физических особенностей ребенка с учетом эмоционального настроения и состояния его здоровья. Поступление ребенка в дошкольное учреждение это кризисный момент в его жизни. Чтобы обеспечить своевременное и полноценное развитие ребенка необходимо учитывать его особенности и создавать условия для развития которые помогли бы ему гармонично войти в мир и реализовать потенциал заложенный в нем природой и собственной программой развития.
6041. Классификация условий эксплуатации. Влияние условий эксплуатации на срок службы электродвигателей 161.8 KB
Классификация условий эксплуатации. Влияние условий эксплуатации на срок службы электродвигателей. Непрерывное диагностирование электрических машин. Классификация методов непрерывного диагностирования электрических машин.
6260. Вентиляция и освещение 18 KB
Если в помещении нет вредных выделений то вентиляция должна обеспечивать воздухообмен не менее 30 м3 ч на каждого работающего. Вентиляция обмен воздуха обеспечивающий удаление вредных паров газов пыли и поддерживающий определённые метеорологические условия в производственном помещении. Количество воздуха подаваемое в помещение определяется расчетным путём с учётом концентрации вредных веществ избытка тепла и влаги Вентиляция бывает естественная и принудительная общая и местная организованная и неорганизованная.

Принципы безопасности жизнедеятельности - это основные направления деятельности, элементарные составляющие процесса обеспечения безопасности.

Теоретическое и познавательное значение принципов состоит в том, что с их помощью определяется уровень знаний об опасностях окружающего мира и, следовательно, формируются требования по проведению защитных мероприятий и методы их расчета. Принципы БЖД позволяют находить оптимальные решения защиты от опасностей на основе сравнительного анализа конкурирующих вариантов. Они отражают многообразие путей и методов обеспечения безопасности в системе «Человек-среда обитания», включающее как чисто организационные мероприятия, конкретные технические решения, так и обеспечение адекватного управления, гарантирующего устойчивость системы, а также некоторые методологические положения, обозначающие направление поиска решений. Принципы БЖД могут быть применены в различных сферах: технике, медицине, организации труда и отдыха. По сфере реализации, т.е. в зависимости от того где они применяются принципы БЖД могут быть подразделены на инженерно-технические, методические, медико-биологические.

По признаку реализации, т.е. по тому как, каким образом они осуществляются, принципы БЖД подразделяются на следующие группы:

ориентирующие , т.е. дающие общее направление поисков решений в области безопасности; к ориентирующим принципам относятся, в частности, принцип системного подхода, профессионального отбора, принцип нормирования негативных воздействий и т.п.

управленческие ; к ним относятся принцип контроля, принцип стимулирования деятельности, направленной на повышение безопасности, принципы ответственности, обратных связей и др.

организационные ; среди этих принципов можно назвать так называемую защиту временем , когда регламентируется время, в течение которого допускается воздействие на человека негативных факторов, принцип рациональной организации труда, рациональных режимов работы, организация санитарно-защитных зон и др.

технические; эта группа принципов подразумевает использование конкретных технических решений для повышения безопасности.

На последней группе принципов следует остановиться как на особенно многочисленной и разнообразной. К техническим принципам относятся такие как:

защита количеством (снижение количественных характеристик негативных воздействий, например, интенсивности шума), или так называемое снижение негативного фактора в источнике за счет проектирования более совершенных, экологичных технических устройств (автомобильные двигатели с низким содержанием вредных веществ в выхлопных газах, мониторы компьютеров, обладающие незначительными уровнями электромагнитного излучения в окружающую среду и т.п.);

защита расстоянием , использующая тот факт, что интенсивность ряда негативных воздействий убывает с расстоянием;

защита с помощью ограждений;

экранирование;

блокировка;

герметизация;

принцип слабого звена (применение предохранителей, например, плавких предохранителей в электрической цепи, размыкающих цепь при возникновении аварийного режима, предохранительных клапанов, мембран, которые в опасной ситуации сбрасывают избыточное давление и т.п.).

В дальнейшем вы увидите как те или иные принципы реализуются при защите от конкретных опасностей.

Принципы обеспечения безопасности необходимо рассматривать во взаимосвязи, т. е. как элементы, дополняющие друг друга.

Некоторые принципы относятся к нескольким классам одновременно. Принципы обеспечения БЖД образуют систему, и в тоже время каждый принцип обладает относительной самостоятельностью.

Методы обеспечения БЖД. Как известно, метод - это способ достижения цели. Здесь целью является обеспечение безопасности. Методы БЖД основаны на применении вышеперечисленных принципов. Пользуясь методами обеспечения БЖД мы можем согласовать взаимодействие характеристик человека с окружающей средой (будь то система "человек - производственная среда", "человек - бытовая среда" или "человек - природная среда"), т.е. достичь определенного уровня безопасности.

Принято выделить четыре метода БЖД:

А-метод: пространственное или временнoе разделение гомосферы и ноксосферы (дистанционное управление, механизация, автоматизация)

Б-метод: нормализация ноксосферы, т.е. совершенствование среды, чаще производственной, приведение характеристик ноксосферы в соответствие с характеристиками человека. Б-метод реализуется в создании безопасной техники.

В-метод: используется тогда, когда А- и Б-методы не дают желаемого результат и требуемого уровня безопасности. Он подразумевает адаптацию человека к ноксосфере (обучение, тренировка, профессиональный отбор).

Г- метод: сочетает в себе вышеупомянутые методы и используется чаще всего.

Средства БЖД. Средства БЖД - это конкретные средства защиты человека от различных опасностей. Средства защиты работающих в соответствии с ГОСТ 12.4.011-80 подразделяющиеся по характеру их применения на средств коллективной защиты (СКЗ) и средства индивидуальной защиты (СИЗ).

СКЗ классифицируется в зависимости опасных и вредных факторов (СКЗ от шума, вибрации и т.п.)

СИЗ классифицируется в основном в зависимости от защищаемых видов органов (СИЗ органов дыхания, рук, головы, лица, глаз, слуха и т.д.)

По техническому исполнению СКЗ могут быть разделены по следующим группам:

ограждения;

блокировочные устройства;

тормозные устройства;

предохранительные устройства;

световая и звуковая сигнализация;

приборы безопасности;

знаки безопасности;

устройства автоматического контроля;

устройства дистанционного управления;

заземление, зануление;

вентиляция, отопление, кондиционирование.

К СИЗ относятся скафандры, противогазы, респираторы, шлемы (пневмошлемы, противошумовые), маски, рукавицы из специальных материалов, защитные очки, предохранительные пояса.

Средства безопасности должны обеспечивать нормальные условия для деятельности человека. Это требование должно быть в первую очередь учтено при создании СИЗ, поскольку многие СИЗ создают существенные неудобства и зачастую резко снижают работоспособность человека. Именно из-за этого от СИЗ часто отказываются в ущерб безопасности, а ведь они должны применяться в тех случаях, когда безопасность не достигается с помощью других средств (организационных, технических и др. решений применения СКЗ). Поэтому СИЗ обязательно должны оцениваться по защитным и функциональным показателям.

К средствам БЖД следует также отнести так называемые приспособления для организации безопасности (например: лестницы, трапы, леса, подмостки, люльки и т.п.).

Цели изучения темы

· ознакомиться с основными способами обеспечения комфортных условий на производстве.

Требования к знаниям и умениям

Студент должен знать:

· критерии комфортности;

· требования к организации рабочего места;

· требования к рациональному освещению рабочих мест.

Студент должен уметь рационально организовать рабочее место.

Ключевой термин

Ключевой термин: комфортные условия на рабочем месте.

Комфортные условия на рабочем месте - это условия, обеспечивающие высокую работоспособность человека и сохранение его здоровья.

Второстепенные термины

· оптимальные метеоусловия;

· организация рабочего места;

· техническая эстетика;

· рациональное освещение.

Структурная схема терминов

Устройство производственных зданий и помещений

Согласно СниП (Санитарные нормы проектирования промышленных предприятий СН245-71) еще на стадии проектирования предъявляются следующие требования к устройству производственных зданий и помещений:

· рациональный выбор площадки под строительство (удобное расселение населения, учёт местных климатических условий);

· устройство санитарно-защитной зоны вокруг предприятия в соответствии с СниП;

· рациональное размещение цехов, исключающее вредное их влияние друг на друга.

Для этого расстояние между цехами должно быть не менее максимальной высоты противостоящих зданий для лучшей естественной освещённости и вентиляции.

Нормы площади для рабочих и служащих:

· для конторских служащих - 4 кв. м на одно рабочее место;

· для специалистов конструкторского бюро - 6 кв. м на одного человека;

· для оператора ПЭВМ - 6 кв. м на одно рабочее место.

Минимально допустимая высота производственного помещения – 3,2 м; складских помещений – 2,5 м. Ширина проходов 1,5 м, если на предприятии работает до 400 человек.

Кроме этого, исходя из списочного состава работающих, рассчитывается необходимое количество бытовых помещений (туалеты, душевые, раздевалки, буфеты, столовые, медпункт и т.д.).



Организация рабочего места

Рабочее место - это место постоянного или периодического пребывания работающего в процессе трудовой деятельности.

Рабочая зона - пространство, ограниченное высотой 2 м над уровнем пола, на котором находятся места постоянного или временного пребывания работающих.

Постоянное рабочее место - место, где работающий находится большую часть рабочего времени (более 50% раб. времени или более 2 часов непрерывно).

Непостоянное рабочее место - место, где работающий находится менее 50% рабочего времени или менее 2 часов непрерывно.

Конструкция рабочего места и взаимное расположение всех его элементов (сиденье, органы управления, средства отображения информации и т.д.) должны соответствовать ряду требований: характеру работы, антропологическим, физиологическим и психологическим данным работающего. При работе сидя существуют три зоны, в которых располагаются органы управления (рис. 1.3.1):

Рисунок 1.3.1.

1 - оптимальная зона. Частота операций в ней две и более в минуту.

2 - зона легкой досягаемости. Операции выполняются часто (менее двух операций в минуту, но более двух операций в час).

3 - зона досягаемости. Операции выполняются редко (не более двух операций в час).

При проектировании оборудования и организации рабочего места учитываются антропометрические показатели женщин и мужчин (рост, длина рук и т д). Оптимальное положение работающего достигается регулированием высоты рабочей поверхности, сиденья, пространства для ног.

Техническая эстетика

Производственная эстетика разрабатывает способы положительного эмоционального воздействия на человека. Всё, что окружает человека в процессе труда, должно доставлять ему радость своим совершенством и красотой, и, тогда производственная обстановка становится эмоциональным стимулом для повышения работоспособности и производительности труда. Основное направление производственной эстетики - использование цвета. И здесь большую роль играет окраска помещения и оборудования. По вызываемому ощущению все цвета подразделяются на тёплые - красный, оранжевый, желтый, желто-зеленый и их оттенки, и холодные - зелёный, синий, фиолетовый и их оттенки.

Правильно подобранное цветовое оформление рабочих мест, инструментов улучшает настроение, повышает работоспособность человека. Цвет воздействует на остроту зрения, которая максимальна в желтой зоне спектра и снижается к краям. Самые низкие показатели характерны для синего цвета. Психологическое воздействие цветов на человека приводит к различным ощущениям: голубой цвет вызывает ощущение прохлады; неяркие жёлтые тона дают ощущение тепла; синий, голубой, зеленый - успокаивают и уменьшают утомление зрения; красный, оранжевый возбуждают нервную систему, приводят к кажущемуся усилению шума.

При окраске потолков и стен нужно избегать темных тонов, т.к. они вызывают резкий контраст между цветом стен, ярко освещённым рабочим местом и светло окрашенным оборудованием. Тёмные тона поглощают много света, приводят к утомлению зрения и к общему утомлению. Созданы таблицы цветовых тонов, по которым можно выбрать цветовую гамму окраски интерьеров и оборудования, в зависимости от характера производства и тех операций, которые приходится выполнять человеку. Так, для монотонной работы с постоянным напряжением рекомендованы зеленые, сине-зеленые и светло-зелёные тона. Если выполняемая работа требует напряженной умственной деятельности, то предпочтительнее использовать оттенки тёплых тонов - желтые, бежевые. Цвет используют и для предупреждения человека о грозящей опасности. В красный цвет окрашивают аварийные кнопки "Стоп", в оранжевый цвет окрашивают движущиеся части машин.

Техническая эстетика занимается также вопросами эстетизации продукта труда, который должен не только отвечать техническим требованиям, но и быть красивым, чтобы наиболее полно удовлетворять материальным и духовным потребностям человека.

Требования к знаниям и умениям

Студент должен знать:

    критерии комфортности;

    требования к организации рабочего места;

    требования к рациональному освещению рабочих мест.

Студент должен уметь рационально организовать рабочее место.

Ключевой термин

Ключевой термин: комфортные условия на рабочем месте.

Комфортные условия на рабочем месте - это условия, обеспечивающие высокую работоспособность человека и сохранение его здоровья.

Второстепенные термины

    оптимальные метеоусловия;

    организация рабочего места;

    техническая эстетика;

    рациональное освещение.

Структурная схема терминов

Устройство производственных зданий и помещений

Согласно СниП (Санитарные нормы проектирования промышленных предприятий СН245-71) еще на стадии проектирования предъявляются следующие требования к устройству производственных зданий и помещений:

    рациональный выбор площадки под строительство (удобное расселение населения, учёт местных климатических условий);

    устройство санитарно-защитной зоны вокруг предприятия в соответствии с СниП;

    рациональное размещение цехов, исключающее вредное их влияние друг на друга.

Для этого расстояние между цехами должно быть не менее максимальной высоты противостоящих зданий для лучшей естественной освещённости и вентиляции.

Нормы площади для рабочих и служащих:

    для конторских служащих - 4 кв. м на одно рабочее место;

    для специалистов конструкторского бюро - 6 кв. м на одного человека;

    для оператора ПЭВМ - 6 кв. м на одно рабочее место.

Минимально допустимая высота производственного помещения – 3,2 м; складских помещений – 2,5 м. Ширина проходов 1,5 м, если на предприятии работает до 400 человек.

Кроме этого, исходя из списочного состава работающих, рассчитывается необходимое количество бытовых помещений (туалеты, душевые, раздевалки, буфеты, столовые, медпункт и т.д.).

Организация рабочего места

Рабочее место - это место постоянного или периодического пребывания работающего в процессе трудовой деятельности.

Рабочая зона - пространство, ограниченное высотой 2 м над уровнем пола, на котором находятся места постоянного или временного пребывания работающих.

Постоянное рабочее место - место, где работающий находится большую часть рабочего времени (более 50% раб. времени или более 2 часов непрерывно).

Непостоянное рабочее место - место, где работающий находится менее 50% рабочего времени или менее 2 часов непрерывно.

Конструкция рабочего места и взаимное расположение всех его элементов (сиденье, органы управления, средства отображения информации и т.д.) должны соответствовать ряду требований: характеру работы, антропологическим, физиологическим и психологическим данным работающего.

Техническая эстетика

Производственная эстетика разрабатывает способы положительного эмоционального воздействия на человека. Всё, что окружает человека в процессе труда, должно доставлять ему радость своим совершенством и красотой, и, тогда производственная обстановка становится эмоциональным стимулом для повышения работоспособности и производительности труда. Основное направление производственной эстетики - использование цвета. И здесь большую роль играет окраска помещения и оборудования. По вызываемому ощущению все цвета подразделяются на тёплые - красный, оранжевый, желтый, желто-зеленый и их оттенки, и холодные - зелёный, синий, фиолетовый и их оттенки.

Правильно подобранное цветовое оформление рабочих мест, инструментов улучшает настроение, повышает работоспособность человека. Цвет воздействует на остроту зрения, которая максимальна в желтой зоне спектра и снижается к краям. Самые низкие показатели характерны для синего цвета. Психологическое воздействие цветов на человека приводит к различным ощущениям: голубой цвет вызывает ощущение прохлады; неяркие жёлтые тона дают ощущение тепла; синий, голубой, зеленый - успокаивают и уменьшают утомление зрения; красный, оранжевый возбуждают нервную систему, приводят к кажущемуся усилению шума.

При окраске потолков и стен нужно избегать темных тонов, т.к. они вызывают резкий контраст между цветом стен, ярко освещённым рабочим местом и светло окрашенным оборудованием. Тёмные тона поглощают много света, приводят к утомлению зрения и к общему утомлению. Созданы таблицы цветовых тонов, по которым можно выбрать цветовую гамму окраски интерьеров и оборудования, в зависимости от характера производства и тех операций, которые приходится выполнять человеку. Так, для монотонной работы с постоянным напряжением рекомендованы зеленые, сине-зеленые и светло-зелёные тона. Если выполняемая работа требует напряженной умственной деятельности, то предпочтительнее использовать оттенки тёплых тонов - желтые, бежевые. Цвет используют и для предупреждения человека о грозящей опасности. В красный цвет окрашивают аварийные кнопки "Стоп", в оранжевый цвет окрашивают движущиеся части машин.

Техническая эстетика занимается также вопросами эстетизации продукта труда, который должен не только отвечать техническим требованиям, но и быть красивым, чтобы наиболее полно удовлетворять материальным и духовным потребностям человека.

Где бы работа ни выполнялась - в помещении или на открытом воздухе, во всех случаях в рабочей зоне возникает определённый микроклимат, который характеризуется следующими показателями:

Температура воздуха - характеризует тепловое состояние микроклимата. Измеряется в градусах Цельсия или в градусах Кельвина.

Скорость движения воздуха - усреднённая скорость перемещения воздушных потоков под действием различных побуждающих сил. Измеряется в метрах в секунду (м/с).

Для характеристики содержания влаги в воздухе используют следующие параметры:

Абсолютная влажность воздуха (е) - упругость водяных паров находящихся в момент исследования в воздухе.

Максимальная влажность воздуха (М) - упругость водяных паров, максимально возможная при данной температуре воздуха.

Относительная влажность воздуха (R) - это отношение абсолютной влажности воздуха к максимальной. R = е/М*100%.

Между человеком и окружающей средой происходит постоянный теплообмен. Несмотря на колебания температуры окружающей среды, температура тела человека поддерживается на постоянном уровне за счет процесса терморегуляции: в подмышечной впадине (36,6 - 39,7)°С, с колебаниями в течение суток в пределах (0,5 - 0,7)°С.

Терморегуляция организма - физиологический процесс поддержания температуры тела в границах от 36,6 до 37,2°С. Основной путь поддержания равновесия - теплоотдача.

Теплоотдача идёт следующими путями:

Излучение тепла телом человека по отношению к окружающим поверхностям, имеющим меньшую температуру. Это основной путь отдачи тепла в производственных условиях. Излучением отдают тепло все тела, имеющие температуру выше абсолютного нуля - 273°С. Человек отдаёт тепло, когда температура окружающих его предметов ниже температуры наружных слоёв одежды (27 - 28°С) или открытой кожи.

Проведение - отдача тепла предметам, непосредственно соприкасающемся с телом человека.

Конвекция - передача тепла через воздушную среду. Человек нагревает вокруг себя слой воздуха толщиной 4 - 8 мм путём проведения тепла. Нагрев более отдалённых слоёв идёт за счёт естественного и принудительного замещения прилегающих к телу более тёплых слоёв воздуха более холодными. При подвижном воздухе теплоотдача увеличивается в несколько раз.

Испарение воды с поверхности кожи и слизистой оболочки верхних дыхательных путей - основной путь отдачи тепла при повышенной температуре воздуха, особенно, когда затрудняется или прекращается отдача излучением или конвекцией. В обычных условиях испарение идет в результате неощутимого потоотделения на большей части поверхности тела в результате диффузии воды без активного участия потовых желёз. В целом организм теряет 0,6 л воды в сутки. При выполнении физической работы в условиях повышенной температуры воздуха идёт повышенное потоотделение, при котором количество теряемой жидкости 10 - 12 л за смену. Если пот не успел испариться, он покрывает кожу влажным слоем, что не способствует отдаче тепла, и создаются условия для перегрева организма. В этом случае идёт потеря воды и солей. Это приводит к обезвоживанию организма, потере минеральных солей и водо-растворимых витаминов (С, В1, В2). Такие потери влаги приводят к сгущению крови, нарушению солевого обмена.

При тяжёлой работе в условиях повышенной температуры воздуха теряется 30 - 40 г соли NaCl (всего в организме 140 г NaCl). Дальнейшая потеря солей вызывает мышечные спазмы, судороги.

В условиях производства может присутствовать тепловое (инфракрасное) излучение - невидимое электромагнитное излучение. Источник - любое нагретое тело.

В зависимости от длины волны оно делится на коротковолновое, средневолновое, длинноволновое. Проходя через воздух эти лучи его не нагревают, но, поглотившись твёрдым телом, лучистая энергия переходит в тепловую.

Особенности действия лучистого тепла зависят от длины волны инфракрасного излучения. Длинные волны (1,4 - 10 мкм) поглощаются слоем кожи, вызывая калящий эффект. Короткие волны проникают глубоко внутрь организма, нагревая внутренние органы, мозг, кровь. Длительное воздействие повышенной температуры в сочетании с большой влажностью может привести к перегреванию организма. При этом у человека возникает головная боль, тошнота, сердцебиение, общая слабость, рвота, потоотделение, частое дыхание, тахикардия. При работе на воздухе, в результате облучения головы инфракрасными лучами коротковолнового диапазона, происходит тяжелое поражение мозговой ткани вплоть до выраженного менингита и энцефалита. В тяжелых случаях наблюдаются судороги, бред, потеря сознания. При этом температура тела остается нормальной или повышается незначительно.

Параметры микроклимата регламентируются с учётом тяжести физического труда и времени года.

При лёгкой работе разрешается более высокая температура и меньшая скорость движения воздуха.

В тёплый период года (при температуре вне помещения +10°С и выше) температура в производственном помещении должна быть не более +28°С при лёгкой работе и не более +26°С при тяжёлой работе. Если вне помещения температура более +25°С, то в помещении допускается повышение температуры до +33°С.

Параметры воздушной среды должны периодически контролироваться. Температура воздуха определяется обычным термометром. Влажность воздуха определяют психрометром Августа. Он состоит из двух термометров - сухого и влажного. Зная разность температур сухого и влажного термометров, по специальным психрометрическим таблицам, прилагаемым к каждому прибору, определяют относительную влажность воздуха.

Скорость движения воздуха определяется с помощью анемометров: чашечного (от 0,2 до 10 м/с); крыльчатого (от 1 до 20 м/с).

Для поддержания нормальных метеорологических условий используется отопление и вентиляция.

Отопление может быть центральным (водяное, паровое, воздушное) и местным (печное). Системы отопления должны обеспечивать равномерный нагрев воздуха, регулироваться, быть взрыво- и пожаробезопасными.

Для защиты отапливаемых помещений от утечки тепла через дверные проёмы применяют тепловые завесы. Подогретый воздух подаётся с боков и снизу проёма.

Вентиляция - обмен воздуха, обеспечивающий удаление вредных паров, газов, пыли и поддерживающий определённые метеорологические условия в производственном помещении. Количество воздуха, подаваемое в помещение, определяется расчетным путём с учётом концентрации вредных веществ, избытка тепла и влаги.

Вентиляция может быть естественная, механическая и смешанная.

При естественной вентиляции воздухообмен осуществляется через форточки, двери или через вентиляционные каналы, расположенные в стенах зданий. Основной недостаток естественной вентиляции в том, что загрязнённый воздух перед удалением не очищается.

Механическая вентиляция по способу подачи воздуха делится на приточную, вытяжную и приточно-вытяжную.

Приточная вентиляция нагнетает чистый воздух в помещение. Загрязнённый воздух удаляется неочищенным через окна. Вытяжная вентиляция удаляет загрязнённый воздух из производственных помещений через воздуховоды, к которым подсоединяются специальные очистные устройства, уменьшающие загрязнение атмосферы.

Наиболее совершенным видом вентиляции является кондиционирование воздуха, что даёт возможность поддерживать постоянную температуру, относительную влажность и скорость движения воздуха.

Освещение... Требования... Виды... Нормы... Под производственным освещением понимают систему устройств и мер, обеспечивающих благоприятную работу зрения человека и исключающую вредное или опасное влияние на него в процессе труда. Ощущение света при воздействии на глаза человека вызывают электромагнитные волны оптического диапазона от 380 до 760 нм (0,38-0,76мкм). Основными понятиями, характеризующими свет, являются световой поток, сила света, яркость и освещённость. Световым потоком (Ф) называют поток лучистой энергии, оцениваемый по зрительному ощущению. Единицей измерения светового потока является люмен (лм) - световой поток, излучаемый точечным источником света силой в одну канделу [кд], помещенного в вершину угла в один стерадиан. Стерадиан (С) - единица измерения телесного угла. За С [стер] принимается угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, численно равную квадрату радиуса сферы. Пространственную плотность светового потока принято называть силой света (I) [кд], которая является основной светотехнической единицей, устанавливаемой по специальному эталону. Эталон - точечный источник света, испускающий в перпендикулярном направлении свет с площади в 1/6×10 5 м 2 черного тела при температуре затвердевания платины Т=2042К и давлении 101,325Кпа. Так как уровень ощущения света глазом зависит от плотности светового потока на сетчатке глаза, то основное значение имеет световой поток, отражённый от освещаемой поверхности и попадающей на зрачок. В связи с этим введено понятие яркости (L), благодаря которой человек различает предметы. Яркостью [кд/м 2 ] называют отношение силы света, излучаемой в рассматриваемом направлении, к площади светящейся поверхности. Освещённость (Е) характеризует поверхностную плотность светового потока и определяется отношением светового потока к площади освещаемой поверхности. Единицей измерения освещённости является люкс [лк]. Люкс - освещённость поверхности площадью в 1м 2 равномерно освещаемой световым потоком в 1лм. Падающий на тело свет частично отражается им, частично пропускается сквозь среду тела и поглощается им. В зависимости от спектрального состава свет может оказывать возбуждающее действие и усиливать чувство тепла (оранжево-красный), или, наоборот,­ успокаивающее (желто-зелёный), или усиливать тормозящие процессы (сине-фиолетовый). Необходимо отметить, что правильно подобранная и организованная освещённость влияет на производительность труда. Особенно велико значение освещённости при выполнении сложных работ на сборке, настройке и других аналогичных операциях. Неправильно выполненное освещение вызывает быструю усталость, способствует увеличению травматизма и несчастных случаев. Из-за этого возникает до 5% травм и в 20% освещение способствовало их возникновению. Таким образом, производственное освещение может являться вредным и опасным производственным фактором, в соответствии с нормативным документом ″ССБТ ГОСТ 12.0.003-74″. Исследование воздействия производственного освещения на условия труда позволяют сформулировать основные требования, обуславливающие его рациональные параметры, а, затем, и расчёт. 1. Освещённость на рабочих местах должна соответствовать характеру зрительной работы. 2. Яркость на рабочей поверхности должна быть равномерной. 3. На рабочей поверхности должны отсутствовать резкие тени. 4. Отсутствие блёсткости рабочей поверхности. 5. Освещённость рабочей поверхности не должна изменяться со временем. 6. Свет должен обеспечивать правильную цветопередачу. 7.Обеспечивать электро-взрыво-и пожаробезопасность и быть экономичным. При проектировании производственного освещения руководствуются следующими нормативными документами: СНИП 23-05-95 "Естественное и искусственное освещение" и ГОСТ 12.1.046-85. Естественное освещение производственных помещений может осуществляться через окна в стенах (боковое), через верхние световые проёмы - фонари (верхнее) или обоими способами одновременно (комбинированное). Два последних вида более предпочтительны, поскольку создаётся более равномерная освещённость. Естественная освещённость (е) нормируется с помощью коэффициента естественной освещённости (КЕО), который определяется по формуле: е = (Е вн / Е нар 100 % , где Е вн - освещённость внутри помещения; Е нар - освещённость поверхности небесной сферой. Искусственное освещение используется при недостатке естественного света или в тёмное время суток и подразделяется на рабочее, аварийное, эвакуационное и охранное. Оно проектируется двух систем: общее и комбинированное. Последнее включает общее и местное освещение. Общее освещение предназначено для освещения всего помещения равномерным или локализованным светом. Комбинированное освещение используется при работах повышенной точности и при изменяющемся в процессе труда направлении освещённости. Местное освещение предназначено для освещения только рабочей поверхности. При выборе параметров искусственного освещения учитываются: характер зрительной работы, контраст объекта (детали) с фоном, фон и систему освещения. Характер зрительной работы определяется размером объекта различения (мм). Нормативами установлено его 8 разрядов. От наивысшей точности работы, равной О,15мм до малой точности - 1-10мм. Разряд 5 - грубые работы - более 10мм. Разряды 6, 7 предназначены для работы со светящимися материалами, а 8 разряд не ограничивает размеры объекта различения и устанавливается для работы общего наблюдения за ходом производственных процессов. В зависимости от контраста объекта с фоном и характера фона установлены подразделы (для 1-4 разрядов) а, б, в, г. Контраст объекта различают малый, средний и большой, а фон - ­тёмный, светлый и средний. Каждому подразделу отвечает сочетание контраста и фона. Необходимая величина освещённости принимается по СНИП 23-05-95. Аварийное освещение нужно предусматривать, если отключение рабочего освещения и связанное с этим нарушение в обслуживании оборудования может привести к нарушению технологического процесса, взрыву, пожару и другим опасным последствиям, а так же к остановкам работы систем энергетики и жизнеобеспечения. Наименьшая величина аварийного освещения должна быть 5% от нормируемого рабочего освещения, но не менее 2лк внутри зданий и 1лк для территории предприятия. Эвакуационное освещение служит для освещения эвакуационных путей и предусматривается: а) в местах, опасных для прохода людей; б) в проходах и на лестницах, служащих для эвакуации не менее 50 человек; в) на основных проходах в производственных помещениях, когда там работает не менее 50 человек; г) в производственных помещениях с постоянно работающим оборудованием, если выход людей при аварийном освещении связан с опасностью травмирования; д) в помещениях зданий, где одновременно может находиться более 100 человек. Это освещение должно обеспечивать на полу основных проходов, ступенях лестниц в помещениях 0,5лк и на территории 0,2лк. Охранное освещение предусматривается вдоль границ территорий и предприятий, охраняемых в ночное время. Его величина должна быть не менее 0,5лк на уровне земли.

Измерения... Расчёт... Измерение освещённости проводится в соответствии с методикой по ГОСТ 24940-81 "Здания и сооружения. Метод измерения освещённости". Для измерения освещённости применяются приборы - люксметры различных модификаций, фотометры, измерители видимости и комплексный измеритель светотехнических величин. Все люксметры представляют собой сочетание селенового фотоэлемента и миллиамперметра, градуированного в люксах. Действие прибора основано на явлении фотоэлектрического эффекта. Световой поток, падая на фотоэлемент, вызывает образование фототока, который регистрируется миллиамперметром. При проектировании освещения объектов различного назначения, мест производства работ вне зданий, улиц, дорог и площадей населенных пунктов и городов следует руководствоваться нормативными требованиями к освещению СНиП 11-4-79 "Естественное и искусственное освещение"; Правилами устройства электроустановок; Правилами технической эксплуатации электроустановок потребителей; инструкциями и отраслевыми нормами по проектированию освещения, утвержденных в установленном порядке.

Литература

    Электронный ресурс: http://www.studarhiv.ru/dir/cat19/subj28/file267/view267.html

    УДК 331.45:574, Безопасность жизнедеятельности: учебно-методическая разработка / сост. Р.Д. Магомет, CЗТУ, 2010. – 140 с.



Что еще почитать