Что не входит в треугольник пожара. Треугольник огня и пожарный тетраэдр

Для любого горения необходимы и достаточны три обязательных условия - наличие горючего вещества, кислорода и источника воспламенения. Эти три условия образуют треугольник горения.
Горючее вещество - основа горения. Оно может быть твердым (дерево, ткани, резина, уголь), жидким (нефтепродукты, спирты) и газообразным (метан, ацетилен, водород, аммиак). При концентрациях ниже нижнего концентрационного предела взрываемости горение паро/газо-воздушной смеси не происходит из-за недостаточности горючего вещества.

Эта зона считается безопасной. В пределах между нижним и верхним концентрационными пределами зона является взрывоопасной. Концентрации выше верхнего предела считаются пожароопасными. Взрывы здесь не происходят из-за недостаточности окислителя. На границе объема с открытой средой возможно пламенное горение.
Окислитель - вторая сторона треугольника горения. Обычно в качестве окислителя при горении выступает кислород воздуха, однако могут быть и другие окислители - окислы азота.
Критическим показателем для кислорода воздуха, как окислителя, является его концентрация в воздушной среде закрытого судового помещения в объемных пределах выше 12...14%. Ниже этой концентрации горение абсолютного большинства горючего вещества не происходит (нефть и нефтепродукты, дерево и изделия из него, бумага, ткани и другие). Однако некоторые горючие вещества способны гореть и при более низких концентрациях кислорода в окружающей газовоздушной среде.
Источник воспламенения - является третьей составляющей треугольника горения. Он также имеет свои критические показатели. Например, пары нефтепродуктов не способны поджечь так называемые фрикционные искры (искра, возникающая при соударении металла о металл), хотя эфиры она может легко поджечь. Аммиак загорается при горении головки спички (600-700), но, как правило, температуры горения спичечной соломки недостаточно для этого.
Твердые, жидкие и газообразные горючие вещества, наряду с другими, свойственными каждому из них физико-химическими свойствами, обладают способностью загораться без прямого воздействия источника воспламенения - самовоспламеняются.
Самовоспламенение - это быстрое самоускорение экзотермической химической реакции, приводящее к появлению яркого свечения - пламени.
Самовоспламенение происходит в результате того, что при окислении водиться за пределы реагирующей системы. Для жидких и газообразных горючих веществ это возникает при критических параметрах температуры и давления.
Организация и проведение пожарно-профилактической работы, направленной на недопущение возникновения пожара, основывается на том, чтобы показатель хотя бы одной из сторон треугольника горения был ниже минимально необходимой величины.
Если горение возникло (треугольник замкнулся), действия участников тушения пожара должны быть направлены на то, чтобы вывести эти показатели (хотя бы один) за пределы критических величин (разорвать треугольник) - это и есть теоретическая основа горения и его тушения.

Реакция горения происходит при одновременном действии трех факторов: наличии горючего вещества, которое будет испаряться и гореть; достаточном количестве кислорода для окисления элементов вещества; источнике теплоты, повышающем температуру до границы воспламенения. При отсутствии одного из факторов пожар не может начаться. Если во время пожара удается один из факторов исключить, то пожар прекращается.

Если пожар не удается локализовать в ранней стадии, то интенсивность его распространения нарастает, чему способствуют следующие факторы.

Теплопроводность : большинство судовых конструкций выполнено из металла, обладающего высокой теплопроводностью, что способствует передаче большого количества теплоты и распространению пожара с одной палубы на другую, из одного отсека в другой. Под воздействием теплоты от пожара начинает желтеть, а затем вспучиваться краска на переборках, повышается температура в соседнем с пожаром отсеке и при наличии в нем горючих веществ возникает дополнительный очаг пожара.

Лучистый теплообмен : высокая температура в очаге пожара способствует образованию лучевых потоков теплоты, распространяющихся прямолинейно во все стороны. Встречающиеся на пути теплового потока судовые конструкции частично поглощают теплоту потока, что приводит к повышению их температуры. Вследствие лучистого теплообмена могут воспламениться горючие материалы. Особенно интенсивно он действует внутри судовых помещений. Кроме распространения пожара лучистый теплообмен создает значительные трудности при операции по ликвидации пожара и требует применения специальных защитных средств для людей.

Конвективный теплообмен : при распространении горячего воздуха и нагретых газов по судовым помещениям переносится значительное количество теплоты от очага пожара. Нагретые газы и воздух поднимаются, их место занимает холодный воздух -создается естественный конвективный теплообмен, который может стать причиной возникновения дополнительных очагов пожара.

Распространению пожара способствуют следующие факторы: теплопроводность металлических конструкций судна; лучистый теплообмен, вызванный высокой температурой; конвективный теплообмен, возникающий при движении потоков нагретых газов и воздуха.

Опасность пожара. Во время пожара создается серьезная опасность для здоровья и жизни людей. К опасным факторам пожара относятся, следующие.

Пламя: при непосредственном воздействии на людей может вызвать местные и общие ожоги и поражение дыхательных путей. При тушении пожара без специальных защитных средств следует находиться на безопасном расстоянии от очага загорания.

Теплота: для человека опасна температура выше 50 °С. В районе пожара на открытом пространстве температура поднимается до 90 °С, а в закрытых помещениях - 400°С. Непосредственное воздействие потоков теплоты может привести к обезвоживанию организма, ожогам, поражению дыхательных путей. Под воздействием высокой температуры у человека могут начаться сильное сердцебиение и нервное возбуждение с поражением нервных центров.

Газы: химический состав газов, образующихся при пожаре, зависит от горючего вещества. Во всех газах содержится двуокись углерода ССЬ (углекислый газ) и окись углерода СО. Наиболее опасна для человека окись углерода. Два-три вдоха воздуха, содержащего 1,3% СО, приводят к потере сознания, а несколько минут дыхания - к гибели человека. Избыточное содержание двуокиси углерода в воздухе уменьшает поступление кислорода в легкие, что отрицательно сказывается на жизнедеятельности человека.

При воздействии высоких температур на синтетические материалы, происходит выделение газов насыщенных высокотоксичными веществами, содержание которых в воздухе даже в незначительной концентрации представляет серьезную угрозу жизни человека.

Дым: частицы несгоревшего углерода и других веществ, находящиеся в воздухе во взвешенном состоянии, образуют дым, который раздражает глаза, носоглотку и легкие. Дым перемешан с газами, и в нем содержатся все токсичные вещества, присущие газам.

Взрыв: пожар может сопровождаться взрывами. При определенной концентрации паров горючих веществ в воздухе, изменяющейся под действием теплоты, создается взрывоопасная смесь. Причиной взрыва могут стать избыточный поток теплоты, разряды статического электричества или детонирующие удары, а также чрезмерное повышение давления в сосудах, находящихся под давлением. Взрывоопасная смесь может образоваться при содержании в воздухе паров нефтепродуктов и других легковоспламеняющихся жидкос­тей, угольной пыли, пыли от сухих продуктов. Последствиями взрыва могут быть серьезные разрушения металлических конструкций судна и гибель людей.

Пожар представляет серьезную опасность для судна, здоровья и жизни людей. Основными факторами опасности являются: пламя, теплота, газы и дым. Особенно серьезную опасность представляет вероятность взрыва.

Треугольник горения ("пожарный треугольник") Для процесса горения
необходимы соответствующие условия: горючее вещество, что способно самостоятельно
гореть после удаления источника воспламенения. Воздух (кислород), а также источник
воспламенения, что должен иметь определенную температуру и достаточный запас
теплоты. Если одно из этих условий отсутствует, процесса горения не будет. Так
называемый пожарный треугольник (кислород воздуха, теплота, горючее вещество)
могут дать простейшее представление о трех факторах пожара, необходимых для
существования пожара. Символический пожарный треугольник иллюстрирует это положение и дает представление о важных факторах, необходимых для предотвращения и тушения пожаров:

Если одна из сторон треугольника отсутствует, пожар не может начаться;

Если одну из сторон треугольника исключить, пожар потухнет.

Рис. 3. Пожарный треугольник

1 - горючее вещество, 2- источник теплоты, 3 - кислород воздуха

Воробьева Анастасия, Павлюк Любовь

Анализ количества пожаров, возникающих в Банском районе за последние 5 лет, говорит о том, что с каждым годом количество пожаров резко возросло.

Пожары наносят огромный материальный ущерб. Только в 2012 году материальный ущерб от пожаров в Баганском районе составил более 8 миллионов рублей.

Создавая проект мы решили рассмотреть вопросы при каких условиях возникает процесс горения.

1.2.Цель: выяснить условия, необходимые для протекания процесса горении.

1.3.Задачи:

  • Определить, что такое горение;
  • Выяснить условия, которые необходимы для процесса горения;
  • Провести опыты.

Скачать:

Предварительный просмотр:

Муниципальное казённое общеобразовательное учреждение Владимировская основная общеобразовательная школа

Тема: «Треугольник огня»

Руководитель: Панина Татьяна Ивановна

Владимировка 2013г

1.Введение………………………………………………………………….3

1.2.Цель…………………………………………………………………….4

1.3.Задачи…………………………………………………………………..4

2.Что такое огонь?........................................................................................4

2.1. Горючее вещество (топливо)…………………………………………4

2.2. Окислитель…………………………………………………………….5

2.3. Температура возгорания (тепло)…………………………….……….5

3. Треугольник огня………………………………………………………..6

3.1.Опыт №1………………………………………………………………..6

3.2. Опыт №2……………………………………………………………….7

3.3. Опыт №3……………………………………………………………….7

4. Вывод………………………………………………………………….…8

5. Заключение………………………………………………………….…...8

Список литературы……………………………………………………..….9

1.Введение

Анализ количества пожаров, возникающих в Банском районе за последние 5 лет, говорит о том, что с каждым годом количество пожаров резко возросло.

Пожары наносят огромный материальный ущерб. Только в 2012 году материальный ущерб от пожаров в Баганском районе составил более 8 миллионов рублей.

Создавая проект мы решили рассмотреть вопросы при каких условиях возникает процесс горения.

1.2.Цель: выяснить условия, необходимые для протекания процесса горении.

1.3.Задачи:

  • Определить, что такое горение;
  • Выяснить условия, которые необходимы для процесса горения;
  • Провести опыты.

2.Что такое огонь?

Огонь - явление горенья; высшая степень жара, которая проявляется сгущенным светом; соединенье тепла и света, при сгорании тела… Неправда ли красивое определение дает толковый словарь Даля?

Сущность горения была открыта в 1756 году великим русским ученым М.В. Ломоносовым.. своими опытами он доказал, что горение – это химическая реакция соединения горючего вещества с кислородом воздуха. Поэтому, для того чтобы огонь возник необходимо три составляющие: источник тепла, горючие вещества и окислитель (кислород воздуха). Источник тепла – это все что можно зажечь, это бытовые электрические приборы или открытое пламя, горючие вещества все, что может гореть:

2.1. Горючее вещество (топливо)
Горючие вещества (материалы) – вещества (материалы), способные к взаимодействию с окислителем (кислородом воздуха) в режиме горения. По горючести вещества (материалы) подразделяют на три группы:

  • негорючие вещества и материалы не способные к самостоятельному горению на воздухе;
  • трудногорючие вещества и материалы – способные гореть на воздухе при воздействии дополнительной энергии источника зажигания, но не способные самостоятельно гореть после его удаления;
  • горючие вещества и материалы – способные самостоятельно гореть после воспламенения или самовоспламенения самовозгорания.

Горючие вещества (материалы) – понятие условное, так как в режимах, отличных от стандартной методики, негорючие и трудногорючие вещества и материалы нередко становятся горючими.
Среди горючих веществ имеются вещества (материалы) в различных агрегатном состоянии: газы, пары, жидкости, твёрдые вещества (материалы), аэрозоли. Практически все органические химические вещества относятся к горючим веществам. Среди неорганических химических веществ также имеются горючие вещества (водород, аммиак, гидриды, сульфиды, азиды, фосфиды, аммиакаты различных элементов).
Горючие вещества (материалы) характеризуются показателями пожарной опасности. Введением в состав этих веществ (материалов) различных добавок (промоторов, антипиренов, ингибиторов) можно изменять в ту или иную сторону показатели их пожарной опасности.
2.2. Окислитель
Окислитель является второй стороной треугольника горения. Обычно в качестве окислителя при горении выступает кислород воздуха, однако могут быть и другие окислители - окислы азота и т.п.
Критическим показателем для кислорода воздуха как окислителя, является его концентрация в воздушной среде закрытого судового помещения в объемных пределах выше 12-14%. Ниже этой концентрации горение абсолютного большинства горючих веществ не происходит. Однако некоторые горючие вещества способны гореть и при более низких концентрациях кислорода в окружающей газовоздушной среде.
2.3. Температура возгорания (тепло)
Есть много понятий, применяемых к температурам, при которых возможно возгорание. Главнейшие из них:
Температура вспышки - наименьшая температура, при которой вещество выделяет достаточно горючих для воспламенения паров, при воздействии открытым пламенем, но горение не продолжается.
Температура воспламенения - наименьшая температура, при которой вещество дает достаточно горючих испарений для возгорания и продолжения горения при приложении открытого пламени.
Примечание. Можно заметить, что разница между температурой вспышки и температурой горения в том, что в первом случае происходит мгновенная вспышка, а во втором температура должна быть достаточно высока, чтобы производить достаточно горючих паров для горения, независимо от источника возгорания.

Сегодня общепринятым считается следующее определение – огонь – это совокупность раскаленных газов или плазмы, выделяющихся в результате различных обстоятельств. К этим обстоятельствам может относиться: различные химические реакции, нагревание горючего материала до определенной точки, контакт тока высокого напряжения с горючими материалами и т.д. Объяснение огня с химической точки зрения выглядит следующим образом – огонь – это область пространства, в которой реагирующие между собой вещества и продукты их взаимодействия находятся в газообразном состоянии.

С физической точки зрения огонь объясняют так – это светящаяся горячая зона взаимодействия паров, газов или продуктов термического разложения горючего вещества с кислородом. Горючее вещество может быть твердым, жидким и газообразным. А тот самый цвет, благодаря которому родилась поговорка «на огонь человек может смотреть вечно», появляется из-за наличия различных примесей. Добиться бесцветного пламени, которое можно будет вычислить визуально только по колебаниям воздуха, можно только в специальных условиях, поэтому бытовой огонь всегда «цветной». Температура огня может быть различна. Она зависит от источника горения и от продуктов, участвующих в реакции горения.

3. Треугольник огня

3.1.Опыт №1

Оборудование: восковые свечи, банки разного объема.

Ход работы:

  • Зажигаем свечи.
  • Накрываем свечи банками.
  • Через некоторое время свеча, накрытая литровой банкой огонь слабеет и она затухает; затем проходит еще время и свеча затухает, накрытая трехлитровой банкой.

Вывод: да действительно процесс горения не возможен без окислителя, которым в данном случае является кислород.

3.2. Опыт №2

Оборудование: коробок со спичками

Ход работы:

  • Зажигаем спичку.
  • Спичка сгорает и потухает
  • У нас имеется окислитель и источник воспламенения, но нет горючего вещества.

Вывод : процесс горения невозможен без горючего вещества.

3.3. Опыт №3

Оборудование: костер; камень, железо, ткань, книга, часть плитки потолочной.

Ход работы:

  • Поочередно ложем в костер различные предметы и наблюдаем.
  • Плитка потолочная быстро плавится и сгорает.
  • Ткань плавится и сгорает.
  • Книга загорается и горит.
  • Камень не горит, а только нагревается.
  • Железо не горит, а только нагревается.

Вывод: Есть камень и железо не горит, а ткань, плитка потолочная, книга горят. Камень и железо – негорючие вещества, а значит процесс горения невозможен.

4. Вывод

Для того чтоб протекал процесс горения необходимы три условия: наличие горючего вещества, наличие окислителя, наличия источника воспламенения. Исключив хотя – бы одно из условий процесс горения невозможен. На основе этих особенностей и строится процесс тушения пожаров. Чаще всего исключается окислитель:

  • Если на сковороде загорелся жир, достаточно закрыть сковороду крышкой.
  • Загорелся телевизор, накрыть плотной тканью.

5. Заключение

Для успешного тушения пожара необходимо применение наиболее подходящего огнетушащего вещества, вопрос — о выборе которого должен быть решен практически мгновенно. Правильный его выбор позволит снизить повреждения судна и опасность для всего экипажа. Эта задача значительно облегчается введением классификации пожаров и подразделением их на четыре типа, или класса, обозначаемых латинскими буквами А, В, С, D. В каждый класс включены пожары, связанные с загоранием материалов, имеющих одинаковые свойства при горении и требующих применения одних и тех же огнетушащих веществ. Поэтому для успешной борьбы с пожаром совершенно необходимо знание этих классов, а также характеристик горючести материалов, имеющихся на судне.

Классификация пожаров имеет несколько стандартов, например: ISO 3941 (стандарт Международной организации стандартов) и стандарт NFPA10 (National Fire Protection Association). Здесь приводится последний.

Пожары класса А — это пожары, связанные с горением твердых (образующих золу) горючих материалов, которые могут быть потушены с помощью воды и водных растворов. К таким материалам относятся: древесина и древесные материалы, ткани, бумага, резина и некоторые пластмассы.

Пожары класса В — это пожары, вызванные горением воспламеняющихся или горючих жидкостей, воспламеняющихся газов, жиров и других подобных веществ. Тушение этих пожаров осуществляют прекращением поступления кислорода к огню или предотвращением выделения горючих паров.

Пожары класса С — это пожары, возникающие при воспламенении находящегося под напряжением электрооборудования, проводников или электроустройств. Для борьбы с такими пожарами используют огнетушащие вещества, не являющиеся проводниками электричества.

Пожары класса D — это пожары, связанные с возгоранием горючих металлов: натрия, калия, магния, титана или алюминия и др. Для тушения таких пожаров используют теплопоглощающие огнетушащие вещества, например некоторые порошки, не вступающие в реакцию с горящими металлами. Основная цель разработки такой классификации — помочь экипажам судов при выборе соответствующего огнетушащего вещества. Однако недостаточно знать, что вода — наилучшее средство борьбы с пожарами класса А, поскольку она обеспечивает охлаждение, или что порошок хорошо применять для сбивания пламени при горении жидкости, нужно уметь правильно подавать огнетушащее вещество, используя при этом точные технические приемы борьбы с огнем. Для горения необходимы три элемента: горючее вещество, которое будет испаряться и гореть, кислород для соединения с горючим веществом и теплота для повышения температуры паров горючего вещества до момента их воспламенения. Символический пожарный треугольник иллюстрирует это положение и дает представление о двух важных факторах, необходимых для, предотвращения и тушения пожаров:

1) если одна из сторон треугольника отсутсгвует, пожар не может начаться;

2) если одну из сторон треугольника исключить, пожар погаснет.

Пожарный треугольник — простейшее представление трех факторов, необходимых для существования пожара, но он не поясняет природу пожара. В частности, он не включает цепную реакцию, возникающую между горючим веществом, кислородом и теплотой в результате химической реакции.

Тема: Противопожарная безопасность судна.

Цель работы: Изучить основы противопожарной безопасности на судне и приобрести практические навыки по тушению пожаров в условиях судна.

Задание: Изучить изложенный в методическом пособии материал и подготовить, используя так же рекомендованную литературу и лекционный материал письменный отчет по выполнению лабораторной работы.

План

Введение.

Теория горения

1.2.Виды горения.

1.3. Условия возникновения пожара.

1.3. Треугольник горения ("пожарный треугольник".

1.4. Распространение пожара.

1.5. Опасность пожара.

1.6. Конструктивная противопожарная защита судна.

1.7. Условия ликвидации пожара.

Горючие вещества и их свойства.

Особенности и причины пожаров на судах, меры предупреждения.

3.1. Нарушение установленного режима курения.

3.2. Самовозгорание.

3.3. Неисправность электрических цепей и оборудования.

3.4. Разряды атмосферного и статического электричества.

3.5. Заряды статического электричества.

3.6. Воспламенение горючих гидкостей и газов.

3.7. Нарушение правил производства работ с применением открытого огня.

3.8. Нарушение противопожарного режима в машинном помещении.

Классы пожаров.

Огнетушащие средства.

5.1. Водотушение.

5.2. Паротушение.

5.3.Пенотушение.

5.4. Газотушение.

5.5. Огнетушащие порошки.

5.6. Песок и опилки. Кошма.

Способы тушения пожаров.

Пожарное оборудование и системы.

7.1. Переносные пенные огнетушители и правила их применения.

7.2. Переносные СО 2 огнетушители и правила их применения.

Переносные порошкове огнетушители и правила их применения.

Пожарные рукава, стволы и насадки.

Защита органов дыхания пожарного.

Организация тушения пожаров на судах.

Противопожарная безопасность судна

Введение. Пожар – внезапное и грозное происшествие на судне, зачастую перерастающее в трагедию. Он всегда возникает неожиданно и по самой невероятной причине.Пожары на судах - относительно редкое явление (около 5-6% от всех аварий),однако это бедствие с обычно тяжелыми последствиями. Из опыта установлено, что критический срок борьбы с огнем на судне составляет 15 минут. Если в течение этого времени пожар не удалось локализовать и взять под контроль - судно гибнет. Особенно опасны пожары в машинных помещениях, где находится много горючих материалов. Огонь в МО выводит из строя основные системы энергообеспечения, судно теряет возможность движения, нередко повреждения получают и средства пожаротушения.



Основным поражающим фактором для людей при пожарах является не тепловое излучение, а удушье, вызванное образованием густого дыма при горении различных материалов. Морская история знает немало пожаров на судах.

Трагедия, случившаяся в Хобокене, в пригороде Нью-Йорка в начале прошлого века, когда пламенем пожара были практически полностью уничтожены 4 крупных современных океанских судна – пассажирский лайнер «Кайзер Вильгельм», судно «Бремен» водоизмещением 10000 т, «Майн» (6400 т) и «Зель» (5267 т), потрясла весь мир. И только гибель «Титаника» через 12 лет, а затем 1-я Мировая война затмили последствия трагедии Хабокена. Пожар в Хабокене начался с возгорания одной кипы хлопка и, если бы не благодушное поведение портовых рабочих, тушивших пожар с помощью нескольких ручных огнетушителей, а энергичное и своевременное применение подавляющих средств пожаротушения, пожар мог быть сразу локализован. А причины разыгравшейся трагедии в Хабокене, унесшей жизни 326 человек, до сих пор не выяснены.

Для успешного тушения пожа­ров необходимо быстро, практически мгновенно ре­шить вопрос о применении наиболее эффективного огнетушащего средства. Допущенные ошибки в выборе огнетушащих средств, приводят к потере времени, счет которого ведется на минуты, и разрастанию пожа­ра. Совсем недавний пример – гибель в 2006 г в Красном море парома «САЛАМ-98». В результате несвоевременно принятых экипажем судна мер, возникшее возгорание своевременно не было локализовано. В итоге, во время разыгравшейся трагедии погибли более 1000 человек пассажиров и членов команды и само судно.

Теория горения

1.1. Виды горения. Горением называется физико-хими­ческий процесс, сопровождающийся выделением теплоты и излучением света. Сущность горения заключается в быстропротекающем процессе окисления химических элементов горючего вещества с кислородом воздуха.

Любое вещество является сложным соединением, молекулы которого могут состоять из множества свя­занных друг с другом химических элементов. Химичес­кий элемент в свою очередь состоит из однотипных ато­мов. Каждому элементу в химии присвоен определен­ный буквенный символ. К основным химическим элементам, участвующим в процессе горения, относятся кислород О, углерод С, водород Н.

Во время реакции горения происходит соединение атомов различных элементов с образованием новых ве­ществ. Основными продуктами горения являются:

Окись углерода СО - бесцветный газ без запаха, обладающий высокой токсичностью, содержание кото­рого в воздухе более 1% опасно для жизни человека (рис. 1., а);

Углекислый газ СО 2 относится к инертным газам, но при содержании в воздухе 8-10% человек теряет созна­ние и может погибнуть от удушья (рис. 1.,6);

пары воды Н 2 О, придающие дымовым газам белую окраску (рис. 1., в);

Сажа и пепел, придающие дымовым газам черную окраску.

Рис. 1. Элементы реакции го­рения : а - окись углерода; 6 - углекис­лый газ; в -пары воды.

В зависимости от скорости реакции окисления раз­личают:

тление - медленное горение , вызванное недостатком кислорода в воздухе (менее 10%) или особыми свойства­ми горючего вещества. При тлении световое и тепловое излучение незначительны;

горение - сопровождается ярко выраженным пла­менем и значительным тепловым и световым излуче­ниями; по цвету пламени можно определить температу­ру в зоне горения (Табл. 1.); при пламенном горении вещества содержание кислорода в воздухе должно быть не ниже 16-18%;

Таблица 1. Цвет пламени в зависимости от температу­ры

взрыв - мгновенная реакция окисления с выделени­ем огромного количества теплоты и света; образующие­ся при этом газы, быстро расширяясь, создают сферичес­кую ударную волну, движущуюся с большой скоростью.

В процессе горения в качестве окислителя может быть не только кислород, но и другие элементы. Напри­мер, медь горит в парах серы, железные опилки - в хлоре, карбиды щелочных металлов - в двуокиси угле­рода и т.д.

Горение сопровождается тепловым и све­товым излучением и образованием окиси угле­рода СО, углекислого газа СО 2 , паров воды Н 2 О, сажи и пепла.

1 .2. Условия возникновения пожара. Каждое вещество может существовать в трех агрегатных состояниях: твердом, жидком и газообразном. В твердом и жидком состояниях молекулы вещества тесно связаны друг с другом, и молекулам кислорода практически невозмож­но вступить с ними в реакцию. В газообразном (парооб­разном) состоянии молекулы вещества движутся на большом расстоянии друг от друга и могут быть легко окружены молекулами кислорода, что создает условия для горения.

Горение является началом пожара. При этом проис­ходит окисление миллионов молекул паров, которые распадаются на атомы и в соединении с кислородом образуют новые молекулы. Во время распада одних и образования других молекул происходит выделение тепловой и световой энергии. Часть выделившейся теп­лоты возвращается к очагу пожара, что способствует более интенсивному парообразованию, активизации го­рения и, следовательно, выделению еще большего коли­чества теплоты.

Происходит своеобразная цепная реакция, приводя­щая к разрастанию пламени и развитию очага пожара (рис.2.).

Цепная реакция пожара происходит при одновре­менном действии трех факторов: наличии горючего ве­щества, которое будет испаряться и гореть; достаточ­ном количестве кислорода для окисления элементов ве­щества; источнике теплоты, повышающем температуру до границы воспламенения. При отсутствии одного из факторов пожар не может начаться. Если во время по­жара удается один из факторов исключить, - пожар прекращается.

Рис.2. Цепная реакция горения: 1 - горючее вещество; 2 - кислород; 3 - пары; 4, 5 - молекулы в процессе горения

Пожар возникает только при одновремен­ном действии трех факторов: наличии горюче­го вещества, достаточном количестве кисло­рода, высокой температуре.

1.3. Треугольник горения ("пожарный треугольник" Для процесса горения необходимы соответствующие условия: горючее вещество, что способно самостоятельно гореть после удаления источника воспламенения. Воздух (кислород), а такжеисточник воспламенения, что должен иметь определеннуютемпературу и достаточный запас теплоты. Если одно из этих условий отсутствует, процесса горения не будет. Так называемыйпожарный треугольник (кислород воздуха, теплота, горючее вещество) могутдать простейшее представление о трех факторах пожара, необходимых для существования пожара. Символический пожарный треугольник, представленный на (рис. 3.), наглядно иллюстрирует это положение и дает представление о важных факторах, необходимых для предотвращения и тушения пожаров:

Если одна из сторон треугольника отсутствует, пожар не может начаться;

Если одну из сторон треугольника исключить, пожар потухнет.

Однако пожарный треугольник – простейшее представление о трех факторах, необходимых для существования пожара, – не достаточным образом поясняет природу пожара. В частности, он не включает цепную реакцию , что возникает между горючим веществом, кислородом и теплом в результате цепной реакции. Пожарный тетраэдр (рис.4.) – более наглядно иллюстрирует процесс горения (тетраэдр – это многоугольник с четырьмя треугольными гранями). Он позволяет более полно понять процесс горения, в связи с тем, что в нем есть место для цепной реакции и каждая грань соприкасается с тремя остальными.

Основная разница междупожарнымтреугольником и пожарным тетраэдром состоит в том, что тетраэдр показывает, каким образом за счет цепной реакции поддерживается пламенное горение – грань цепной реакции удерживает остальные три грани от падения.

Этот важный фактор используется во многих современных огнетушителях, автоматических системах тушения пожаров и предотвращении взрывов – огнетушащие вещества воздействуют на цепную реакцию и прерывают процесс ее развития. Пожарный тетраэдр дает наглядное представление о том, каким образом можно потушить пожар. Если удалить горючее вещество, или кислород, или источник теплоты, пожар прекратится.

Если цепная реакция будет прервана, тогда в результате постепенного уменьшения образования паров и выделения теплоты пожар также будет потушен. Вместе с тем, при тлении или возможного вторичного воспламенения необходимо обеспечивать дальнейшее охлаждение.

1.4. Распространение пожара . Если пожар не удается локализовать в ранней стадии, то интенсивность его распространения нарастает, чему способствуют следую­щие факторы.

Теплопроводность (рис. 5, а): большинство судо­вых конструкций выполнено из металла, обладающего высокой теплопроводностью, что способствует переда­че большого количества теплоты и распространению пожара с одной палубы на другую, из одного отсека в другой. Под воздействием теплоты от пожара начинает желтеть, а затем вспучиваться краска на переборках, повышается температура в соседнем с пожаром отсеке и при наличии в нем горючих веществ возникает допол­нительный очаг пожара.

Рис.5. Распространение пожара: а - теплопроводностью; б - лучистым теплообменом; в - конвективным теп­лообменом; 1 - кислород; 2 - теплота

Лучистый теплообмен (рис.5.,б): высокая темпера­тура в очаге пожара способствует образованию лучевых потоков теплоты, распространяющихся прямолинейно во все стороны. Встречающиеся на пути теплового по­тока судовые конструкции частично поглощают тепло­ту потока, что приводит к повышению их температуры. Вследствие лучистого теплообмена могут воспламе­ниться горючие материалы. Особенно интенсивно он действует внутри судовых помещений. Кроме распро­странения пожара лучистый теплообмен создает зна­чительные трудности при операции по ликвидации пожара и требует применения специальных защитных средств для людей.

Конвективный теплообмен (рис.5.,в): при распро­странении горячего воздуха и нагретых газов по судо­вым помещениям переносится значительное количество теплоты от очага пожара. Нагретые газы и воздух под­нимаются, их место занимает холодный воздух - со­здается естественный конвективный теплообмен, кото­рый может стать причиной возникновения дополни­тельных очагов пожара.

Распространению пожара способствуют следующие факторы: теплопроводность ме­таллических конструкций судна; лучистый теплообмен, вызванный высокой температу­рой; конвективный теплообмен, возникающий при движении потоков нагретых газов и воздуха.

1.5. Опасность пожара. Во время пожара создается серьезная опасность для здоровья и жизни людей. К опасным факторам пожара относятся, следующие.

Пламя: при непосредственном воздействии на людей может вызвать местные и общие ожоги и поражение дыхательных путей. При тушении пожара без специаль­ных защитных средств следует находиться на безопас­ном расстоянии от очага загорания.

Теплота: для человека опасна температура выше 50 °С. В районе пожара на открытом пространстве тем­пература поднимается до 90 °С, а в закрытых помеще­ниях - 400 °С. Непосредственное воздействие потоков теплоты может привести к обезвоживанию организма, ожогам, поражению дыхательных путей. Под воздейст­вием высокой температуры у человека могут начаться сильное сердцебиение и нервное возбуждение с пораже­нием нервных центров.

Газы: химический состав газов, образующихся при пожаре, зависит от горючего вещества. Во всех газах содержится двуокись углерода СО 2 (углекислый газ) и окись углерода СО. Наиболее опасна для человека окись углерода. Два-три вдоха воздуха, содержащего 1,3% СО, приводят к потере сознания, а несколько минут дыхания - к гибели человека. Избыточное со­держание двуокиси углерода в воздухе уменьшает по­ступление кислорода в легкие, что отрицательно сказы­вается на жизнедеятельности человека (Табл.2.).

Таблица 2. Состояние человека в зависимости от % содержания кислорода в воздухе

При воздействии высоких температур на синтети­ческие материалы, происходит выделение газов насыщенных высокотоксичны­ми веществами, содержание которых в воздухе даже в незначительной концентрации представляет серьезную угрозу жизни человека.

Дым: частицы несгоревшего углерода и других ве­ществ, находящиеся в воздухе во взвешенном состоя­нии, образуют дым, который раздражает глаза, носо­глотку и легкие. Дым перемешан с газами, и в нем со­держатся все токсичные вещества, присущие газам.

Взрыв: пожар может сопровождаться взрывами. При определенной концентрации паров горючих ве­ществ в воздухе, изменяющейся под действием теплоты, создается взрывоопасная смесь. Причиной взрыва могут стать избыточный поток теплоты, разряды стати­ческого электричества или детонирующие удары, а также чрезмерное повышение давления в сосудах, нахо­дящихся под давлением. Взрывоопасная смесь может образоваться при содержании в воздухе паров нефте­продуктов и других легковоспламеняющихся жидкос­тей, угольной пыли, пыли от сухих продуктов. Последствиями взрыва могут быть серьезные разрушения ме­таллических конструкций судна и гибель людей.

Пожар представляет серьезную опасность для судна, здоровья и жизни людей. Основными факторами опасности явля­ются: пламя, теплота, газы и дым. Особенно серьезную опасность представляет вероят­ность взрыва.



Что еще почитать