Анализ риска аварий на магистральных трубопроводах при обосновании минимальных безопасных расстояний. Аварии на нефтепроводах

РД 153-39.4-114-01. Правила ликвидации аварий и повреждений на магистральных нефтепроводах. Согласно РД, все отказы на МН делятся на аварии и инциденты.

Аварией считается внезапный вылив или истечение нефти в результате полного разрушения или частичного повреждения нефтепровода, резервуаров или другого оборудования, сопровождаемое одним или несколькими следующими событиями:

3. воспламенение нефти или взрыв ее паров;

4. загрязнение рек и других водоемов сверх пределов, установленных на качество воды;

5. утечка нефти более 10м 3 .

Инцидентом на магистральном нефтепроводе считается отказ или повреждение оборудования на объектах МН, отклонение от режимов технологического процесса, нарушение законодательных и правовых актов РФ и нормативных документов (устанавливающих правила ведения работ), которые могут сопровождаться утечками нефти менее 10м 3 без загрязнения водотоков. Инцидент происходит без признаков событий, описанных при аварии, но требует проведения ремонтных работ для восстановления дальнейшей безопасной эксплуатации МН.

Аварией на магистральном газопроводе считается неконтролируемый выброс газа в атмосферу или помещения КС, ГРС или автомобильных газонаполнительных станций (АГНКС), которые сопровождаются разрушением или повреждением газопровода или других его объектов, а также одним из следующих событий:

1. смертельный травматизм людей;

2. травмирование с потерей трудоспособности;

3. воспламенение газа или взрыв;

4. повреждение или разрушение объектов МГ;

5. потери газа более 10000м 3 .

Аварийной утечкой на МГ считается неконтролируемый выход транспортируемого газа в атмосферу, помещения КС, ГРС или АГНКС, без признаков событий, описанных выше, но требующий проведения ремонтных работ для обеспечения дальнейшей безопасной эксплуатации газопровода.

Причины аварий:

1. Нарушение требований технологии и государственных стандартов в процессе производства труб.

2. Отклонения от норм проектирования и строительства трубопроводов.

3. Несоблюдение правил эксплуатации трубопроводов.

4. Влияние природных явлений.

Организационно-технические мероприятия при проведении аварийно-восстановительных работ.

Последовательность на нефтепроводах:

1. сооружение земляного амбара или другой емкости для сбора нефти;

2. подготовка ремонтной площадки и размещение на ней технических средств;



3. отключение средств ЭХЗ;

4. вскрытие аварийного участка и сооружение ремонтного котлована;

5. освобождение аварийного участка от нефти;

6. вырезка дефектного участка или наложение муфты;

7. герметизация (перекрытие) внутренней полости нефтепровода;

8. монтаж и вварка новой катушки;

9. заварка отверстий для отвода нефти;

10. контроль качества сварных швов;

11. пуск нефтепровода в эксплуатацию;

12. изоляция отремонтированного участка нефтепровода;

13. включение средств ЭХЗ;

14. засыпка нефтепровода и восстановление обвалования.

Для устранения неполных разрывов поперечных стыков можно использовать двухстворчатые хомуты со свинцовой или резиновой прокладкой.

При небольших разрывах по основному металлу труб можно применять гладкие хомуты, которые привариваются к трубе.

При полном разрыве поперечных стыков, а т.ж. при разрывах продольных стыков труб поврежденные участки полностью удаляют, а на их место вваривают патрубки из труб того же размера. Для вырезки поврежденных участков используют безогневые технологии.

Последовательность на газопроводах:

1. отключение аварийного участка и освобождение его от газа;

2. отключение средств ЭХЗ;

3. земляные работы по сооружению ремонтного котлована;

4. вырезка отверстий в газопроводе для установки резиновых шаров;

5. установка резиновых шаров для изоляции полости МГ на ремонтируемом участке;

6. вырезка поврежденного участка;

7. вварка новой катушки;

8. проверка качества швов физическими методами контроля;

9. извлечение резиновых шаров;

10. заварка отверстий;

11. вытеснение воздуха из аварийного участка;

12. испытание швов отремонтированного участка под давлением 1 МПа;

13. нанесение изоляции;

14. Испытание трубопровода при рабочем давлении;

15. включение средств ЭХЗ;

16. засыпка трубопровода.

Свищи ликвидируются путем заварки.

Федеральное агентство по образованию

Саратовский государственный

социально-экономический университет

кафедра безопасности жизнедеятельности

Реферат

«Аварии на трубопроводах».

Студентки первого курса УЭФ

Григорьевой Тамары Павловны

Руководитель: доцент кафедры

Баязитов Вадим Губайдуллович

Саратов,2007.


Введение.

1. Общие сведения о состоянии системы трубопроводов в РФ на 2008 год;

2.Аварии на нефтепроводах;

3.Аварии на газопроводе;

4.Аварии на водопроводе;

5.Последствия аварий на трубопроводах;

6.Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах;

Заключение.

Список используемой литературы.

Введение:

По протяженности подземных трубопроводов для транспортировки нефти, газа, воды и сточных вод Россия занимает второе место в мире после США. Однако нет другой страны, где эти трубопроводные магистрали были бы так изношены. По оценкам специалистов МЧС России, аварийность на трубопроводах с каждым годом возрастает и в ХХI век эти системы жизнеобеспечения вошли изношенными на 50-70%. Утечки из трубопроводов приносят стране огромный экономический и экологический ущерб. Особенно большое количество аварий происходит в городах в результате утечек воды из изношенных коммуникаций – канализационных, тепловых и водопроводных сетей. Из разрушенных трубопроводов вода просачивается в грунт, повышается уровень грунтовых вод, возникают провалы и просадки грунта, что ведет к затоплению фундаментов, и в конечном счете грозит обрушением зданий. Зарубежный опыт показывает, что эту проблему можно решить, если вместо стальных трубопроводов применять трубы из пластмассы, а прокладку новых и ремонт изношенных осуществлять не открытым, а бестраншейным способом. Преимущества ремонта трубопроводов бестраншейным методом очевидны: затраты на ремонт снижаются в 6-8 раз, а производительность работ возрастает в десятки раз.

Наблюдается процесс постепенного перехода от традиционных строительных материалов к новым. В частности, при прокладке и реконструкции трубопроводов все чаще применяются полимерные трубы. По сравнению со стальными или чугунными они имеют ряд неоспоримых преимуществ: легкость транспортировки и монтажа, высокая коррозионная стойкость, большой срок эксплуатации, невысокая стоимость, гладкость внутренней поверхности. В таких трубах не ухудшается качество перекачиваемой воды, так как за счет гидрофобности поверхности в них не образуется различные отложения, как это происходит в стальных и чугунных трубопроводах. Пластмассовые трубы не требуют никакой гидроизоляции, в том числе и катодной защиты, они обеспечивают постоянную транспортировку воды, нефти и газа без больших затрат на техническое их обслуживание.

Опыт реконструкции и строительства подземных коммуникаций в Челябинске свидетельствует о том, что применение передовых бестраншейных технологий позволяет значительно удешевить и упростить такие работы. Особенно это актуально для центральных районов города, где работы по перекладке трубопроводов традиционным траншейным способом связаны со значительными трудностями: для проведения этих работ часто необходимо закрытие проездов, изменение маршрутов движения городского транспорта. Требуются многочисленные согласования с различными организациями. С внедрением новейших технологий появилась возможность осуществлять прокладку трубопроводов и инженерных коммуникаций без вскрытия поверхности и участия большого количества людей и тяжелой строительной техники. Таким образом, не нарушается движение городского транспорта, исключаются работы по устройству обходов, переходных мостиков, что особенно важно для города с плотной застройкой и высоким уровнем движения транспорта. Благодаря отсутствию неудобств и нецелесообразных затрат (по сравнению со строительством в траншеях трудозатраты снижаются примерно в 4 раза), применение данных технологий весьма эффективно. Во многих случаях применение современных технологий позволяет отказаться от строительства новых коммуникаций и путем реконструкции полностью восстановить и улучшить их технические характеристики.

Применение новейших технологий в подземном строительстве призвано решить главную задачу – повысить качество сооружаемых подземных объектов и обеспечить безопасность их эксплуатации. Правительство города уделяет самое пристальное внимание этому вопросу. К работам допускаются только специализированные организации, имеющие соответствующую лицензию. На всех стадиях строительства осуществляется многосторонний мониторинг, что обеспечивает получение данных о ходе выполнения проекта и изменениях в окружающей среде, производится постоянный контроль за изменением уровня грунтовых вод, осадками фундаментов близлежащих зданий, деформацией грунтового массива.


1. Общие сведения о состоянии системы трубопроводов в РФ на 2008

В предаварийном состоянии находятся промысловые трубопроводные системы большинства нефтедобывающих предприятий России. Всего на территории Российской Федерации находится в эксплуатации 350 тыс. км внутрипромысловых трубопроводов, на которых ежегодно отмечается свыше 50 тыс. инцидентов, приводящих к опасным последствиям. Основными причинами высокой аварийности при эксплуатации трубопроводов является сокращение ремонтных мощностей, низкие темпы работ по замене отработавших срок трубопроводов на трубопроводы с антикоррозионными покрытиями, а также прогрессирующее старение действующих сетей. Только на месторождениях Западной Сибири эксплуатируется свыше 100 тыс. км промысловых трубопроводов, из которых 30% имеют 30-летний срок службы, однако в год заменяется не более 2% трубопроводов. В результате ежегодно происходит до 35–40 тыс. инцидентов, сопровождающихся выбросами нефти, в том числе в водоемы, причем их число ежегодно увеличивается, а значительная часть инцидентов преднамеренно скрывается от учета и расследования.

Аварийность на объектах магистрального трубопроводного транспорта уменьшилась на 9%. Действующая на территории Российской Федерации система магистральных нефтепроводов, газопроводов, нефтепродуктопроводов и конденсатопроводов не отвечает современным требованиям безопасности.

В процессе реформирования экономики и в результате изменений на рынках нефти происходит постоянное снижение объемов финансирования нового строительства, капитального ремонта, реконструкции, модернизации, технического обслуживания и текущего ремонта физически изношенных и морально устаревших объектов магистральных трубопроводов. Крайне недостаточно финансируются разработки нового оборудования, приборов и технологий дефектоскопии трубопроводов и оборудования, а также разработка новых нормативных документов и пересмотр устаревших.

Отсутствует законодательная база государственного регулирования безопасности функционирования магистральных трубопроводов, в связи с чем назрела необходимость принятия федерального закона о магистральных трубопроводах. Разработка этого закона, начавшаяся в 1997 г., до сих пор не завершена.

В Российской Федерации общая протяженность подземных нефте-, водо- и газопроводов составляет около 17 миллионов километров, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов, участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны вопросы защиты от коррозии для нефтяной, нефтегазодобывающей, перерабатывающей и транспортирующей отраслей, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличие здесь агрессивных сред и жестких условий эксплуатации металлоконструкций. Убытки, вызываемые гидроударами и коррозией, составляли для Минтопэнерго бывшего СССР несколько сотен миллиардов долларов и около 50 тыс. т. черных металлов в год. При общей динамики аварийности, по оценкам экспертов, причинами разрыва трубопроводов являются:

60% случаев – гидроудары, перепады давления и вибрации

25% - коррозионные процессы

15% - природные явления и форс-мажорные обстоятельства.

В течение всего срока эксплуатации трубопроводы испытывают динамические нагрузки (пульсации давления и связанные с ними вибрации, гидроудары и т.д.). Они возникают при работе нагнетательных установок, срабатывании запорной трубопроводной арматуры, случайно возникают при ошибочных действиях обслуживающего персонала, аварийных отключениях электропитания, ложных срабатываниях технологических защит и т.п.

Техническое же состояние эксплуатируемых по 20-30 лет трубопроводных систем оставляет желать лучшего. Замена изношенного оборудования и трубопроводой арматуры в последние 10 лет ведется крайне низкими темпами. Именно поэтому наблюдается устойчивая тенденция увеличения аварийности на трубопроводном транспорте на 7-9% в год, о чем свидетельствуют ежегодные Государственные доклады «О состоянии окружающей природной среды и промышленной опасности Российской Федерации».

Участились аварии на трубопроводах, сопровождающиеся большими потерями природных ресурсов и широкомасштабным загрязнением окружающей среды. По официальным данным только потери нефти из-за аварий на магистральных нефтепроводах превышают 1 млн тонн в год и это без учета потерь при прорывах внутрипромысловых трубопроводов.

Вот лишь несколько примеров аварий на нефтепроводах за 2006г.:

В результате крупной аварии на магистральном нефтепроводе "Дружба" на территории Суражского района Брянской области на границе с Белоруссией нефтью загрязнены рельеф местности, водные объекты и земли государственного лесного фонда. Заместитель главы Росприроднадзора отметил, что на участке нефтепровода "Дружба", где произошла авария, с весны 2006 года было обнаружено 487 опасных дефектов. Причиной аварии на нефтепроводе послужила коррозия труб.

Ущерб от последствий аварии на трубопроводе "Унеча - Вентспилс" может исчисляться миллиардами рублей. В Министерстве природных ресурсов и охраны окружающей среды Беларуси считают, что ущерб от последствий аварии на российском трубопроводе "Унеча - Вентспилс" будет исчисляться в миллиардах рублей. Об этом в интервью БелаПАН сообщил первый заместитель министра природы Александр Апацкий.

Вместе с тем, по его словам, еще не произведена полная оценка экологического ущерба, нанесенного аварией. "Специалисты ведут мониторинг почвы, в том числе в пойме рек после прохождения весеннего половодья. Кроме того, следует учесть возможность загрязнения почвы теми остатками нефтепродуктов, которые смоются дождями с поверхности земли и проникнут в почву", - сказал замминистра.

Напомним, что 23 марта в 18.20 на поле у деревни Быцево Бешенковичского района Витебской области была зарегистрирована утечка дизельного топлива из магистрального трубопровода диаметром 377 миллиметров, залегающего на глубине 0,8 метра. Аварию удалось локализовать в 23.00.

По словам А.Апацкого, подсчет экологического ущерба от аварии может завершиться 6-8 апреля. "Загрязнены сельскохозяйственные угодья в районе аварии, мелиоративный канал, реки Улла и частично Западная Двина. Авария оставила после себя небольшие пленочные загрязнения поверхностных вод, берегов и речного дна", - сказал замминистра.

Он сообщил, что согласно предварительным данным владельца нефтепровода - российского предприятия "Западтранснефтепродукт" компании "Транснефтепродукт" - объем утечки дизельного топлива составил примерно 120 тонн. "Однако для подсчета объема утечки нефтепродуктов мы должны получить от владельца трубопровода данные по объему дизтоплива, извлеченного из грунта и поверхностных вод", - сказал А.Апацкий.

По его словам, предстоит очистить мелиоративный канал, куда попала основная часть нефтепродуктов, а также провести профилактические работы на почве в районе прорыва трубопровода.

Как полагает А.Апацкий, владелец трубопровода будет оплачивать ущерб, нанесенный экологии Беларуси и Латвии. "Каждый день работ по преодолению последствий аварии увеличивает эту сумму", - подчеркнул замминистра. Вместе с тем, отметил он, уровень предельно допустимых концентраций загрязнителей в пограничном створе Западной Двины находится в рамках нормы - кроме пленки из нефтепродуктов, поступающей на латвийскую сторону.

Последствия аварии на трубопроводе Альметьевск-Нижний Новгород в Нижегородской области ликвидированы на 70%, - Верхне-Волжское БВУ

(НИА "Нижний Новгород" - Любовь Ковалева) Последствия аварии на трубопроводе Альметьевск-Нижний Новгород в Кстовском районе Нижегородской области ликвидированы на 70%. Произведен сбор нефтепродуктов, попавших в реку Шавка и водные объекты, расположенные ниже по течению. Об этом НИА "Нижний Новгород" сообщили в Верхне-Волжском бассейновом водном управлении.

По данным на 15 марта, содержание нефтепродуктов в реке Шавка превысило предельно допустимые концентрации для водоемов рыбохозяйственного значения в девять- 19 раз. Специалисты управления и регионального управления Роспотребнадзора 19 марта возьмут новые пробы воды в реке Шавка. Результаты будут известны 21 марта.

Как сообщалось ранее, утечка дизельного топлива из трубопровода произошла 12 марта около н.п. Слободское Кстовского района Нижегородской области. Утечка повлекла загрязнение нефтепродуктами почв и участка реки Шавки, являющейся притоком Волги. Аварийный участок трубопровода, который располагается под землей, является собственностью ОАО "Средневолжский транснефтепродукт". Верхне-Волжским бассейновым водным управлением совместно с территориальными органами Росприроднадзора и других ведомств осуществляется контроль за ликвидацией аварии. Организован вывоз загрязненного нефтепродуктами льда и снега на очистные сооружения для утилизации.

Произошло загрязнение нефтепродуктами части берега и реки Шавка. Поскольку водозаборы в месте загрязнения реки Шавка отсутствуют, попадание нефтепродуктов в реку Волга удалось предотвратить.

Напомним, что Нижегородская природоохранная прокуратура Волжской межрегиональной природоохранной прокуратуры возбудила уголовное дело по факту утечки нефтепродуктов по ст.247 УК РФ.

Большая часть загрязненной нефтью площади реки Вах в Нижневартовском районе ХМАО очищена. Уже ликвидировано 99% загрязнения водного объекта. Об этом сообщает Нижневартовский межрайонный отдел Росприроднадзора ХМАО.

Площадь оставшегося загрязнения, а также предварительная сумма нанесенного окружающей среде ущерба будет установлена после облета места происшествия 16 октября, отметили в Росприроднадзоре.

Напомним, нефтяное пятно на реке было обнаружено инспекторами Росприроднадзора 13 октября. Общая площадь загрязнения водного объекта составила 4,5 км, по предварительной информации, в воду попало две тонны нефти. По факту загрязнения возбуждено административное производство.

Аварии на трубопроводах и промплощадках, размыв обваловок шламовых амбаров, распыление капельной нефти при сгорании попутного газа на факелах - все это приводит к загрязнению нефтяными углеродами водоемов, почв, к деградации древесности. Основными направлениями природоохранной деятельности предприятий являются: строительство природоохранных объектов, контроль за состоянием природной среды и производственных объектов, профилактика аварий на трубопроводах, мероприятия по охране, рациональному использованием и восстановлению земель, водных ресурсов, атмосферного воздуха, экологического обучение.

Организация и проведение всех природоохранных работ входят в обязанности отделов по охране окружающей среды предприятий - недропользователей. Сейчас положение меняется в лучшую сторону: становится правилом разработка годовых и перспективных планов и мероприятий, их согласование с комитетами.

Практически все добываемое в Ханты-Мансийском округе углеводородное сырье транспортируется по трубопроводам. По территории округа проходит целая сеть нефте- и газопроводов. Общая протяженность магистральных трубопроводов составляет 9 тысяч километров. Помимо магистральных трубопроводов на территории округа действуют внутри и межпромысловые трубопроводы. Общая протяженность магистральных и внутри промысловых трубопроводов составляет более 60 тысяч километров.

Негативное влияние трубопроводного транспорта на окружающую природную среду достаточно велико и многообразно. Наиболее существенный ущерб окружающей среде причиняется авариями на продуктопроводах. Особую опасность загрязнения окружающей природной среды представляют места пересечения трубопроводов с водными объектами.

При прокладке и реконструкции трубопроводов изменяются инженерно- геологические условия, усиливаются термокарстовые процессы, образуются просадки и провалы, активизируются процессы заболачивания. В результате уничтожения естественных мест обитания и нарушения путей миграций уменьшается численность и видовой состав животного мира.

Основной причиной аварий на трубопроводах является коррозия металла.

Коррозия металла нефтесборных коллекторов и водоводов, как правило, ручейковый или питтинговый характер и обусловлена агрессивными физико-химическими свойствами водной фазы добываемой из недр продукции.

По территории Обоянского района проходит магистральный газопровод «Щебелинка-Курск-Брянск».
Наиболее опасным участком является пересечение газопровода с рекой Псел в районе города Обоянь.

Вследствие аварии на газопроводе возможно возникновение следующих поражающих факторов:

  1. воздушная ударная волна;
  2. разлет осколков;
  3. термическое воздействие пожара.

Анализ аварий на магистральных газопроводах показывает, что наибольшую опасность представляют пожары, возникающие после разрыва трубопроводов, которые бывают двух типов: пожар в котловане (колонного типа) и пожар струевого типа в районах торцевых участков разрыва. Первоначальный возможный взрыв газа и разлет осколков (зона поражения несколько десятков метров), учитывая подземную прокладку газопровода и различные удаления объектов по пути трассы, возможные зоны поражения необходимо рассматривать конкретно для каждого объекта.
Возможные радиусы термического поражения приведены в Таблице 18.

Выводы:

При аварии на магистральном газопроводе возможно возгорание зданий и поражение людей при пожаре струевого типа на удалении от места аварии до 1200 м.

Учитывая существенное расширение границ селитебной зоны населенных пунктов после завершения строительства газопроводов часть зданий, сооружений и жилых домов попадают в зону поражающих факторов при аварии на данных магистральных газопроводах.

При возникновении пожара (взрыва газовоздушной смеси) на одном из участков магистрального газопровода радиус вероятной зоны поражения может достигать 0,5 км. Ожидается гибель персонала, получателей сжиженного газа свыше 30 человек и 1-3 единиц техники. Вероятное количество населения, попадающего в зону чрезвычайной ситуации до 1000 чел. (по признаку нарушения условий жизнеобеспечения). В результате аварии потеря газа может составить до 100 тыс. м3, экономический ущерб - до 7 тыс. МРОТ.

V. Аварии на магистральных нефтепроводах

По территории района проходит нефтепровод Мичуринск - Кременчуг "Дружба". Диаметр нефтепровода составляет 720 мм. Протяженность нефтепровода - 270 км. Рабочее давление 41 кг/см2. Производительность 30 тыс.т./сут. Количество нефти, находящейся в нефтепроводе составляет 106845 т, что значительно превышает величину порогового количества, определенного для ЛВЖ (50000 т). Магистральный нефтепровод по гражданской обороне не категорируется.
Виды возможных чрезвычайных ситуаций:

1. Разлив нефтепродуктов в результате разгерметизации линейного участка с последующим возгоранием и возможным взрывом паров нефтепродуктов. Так как нефтепродуктопровод проходит на значительном расстоянии от населенных пунктов и промышленных объектов, поэтому в случае взрыва или пожара они не пострадают. Тяжелые последствия прогнозируются на пересечениях с железными дорогами. В этом случае возможен выход из строя железных дорог, ЛЭП, значительный экономический ущерб.

2. Разлив нефтепродуктов в результате разгерметизации подводного перехода. В этом случае возможно попадание нефтепродуктов в реки (до 1,5 тыс. м3) и ее распространение вниз по течению, что приведет к гибели флоры и фауны, загрязнению прибрежной полосы нефтепродуктами.

Площадь вероятной зоны чрезвычайной ситуации - до 2000 м2 на суше и 48000 м 2 на реке. Вероятное количество населения, попадающее в зону чрезвычайной ситуации до 800 чел. Вероятные социально-экономические последствия при возникновении чрезвычайной ситуации:

  1. экономический ущерб - до 30 тыс. МРОТ;
  2. пострадавшие - до 150 чел.;
  3. нарушение условий жизнедеятельности - до 800 чел.

При распространении разлива нефтепродуктов возможно загрязнение рек и водоемов, вынесение нефтепродуктов на береговую линию и частично нарушение жизнедеятельности населения, проживающего в населенных пунктах, расположенных ниже по течению рек.

Наиболее вероятные причины разливов нефтепродуктов:

Аварии в результате внешней/внутренней коррозии стенок трубопровода;
аварии при воздействии высоких температур при пожаре;
аварии в результате хрупкого разрушения при низких температурах;
аварии на трубопроводах и оборудовании при стихийных бедствиях и террористических актах;
аварии в результате механических повреждений;
аварии в результате брака строительно-монтажных работ;
аварии в результате нарушения технологии перекачки нефтепродуктов.

Основными процессами при разлитии нефтепродуктов могут быть:

Растекание;
испарение;
дисперсия;
растворение;
эмульгирование.

Возможны следующие сценарии возможного поведения нефтепродуктов в районах аварий и разливов на воде в зависимости от сезона года:

1. Безледовый период.

Попадая в реку, ручей или источник, нефтепродукты начинают распространяться, увлекаясь поверхностным течением. При этом образуется вытянутое пятно. В общем случае нефтепродукты будут стремиться скапливаться в участках спокойной воды или в водоворотах на изгибах рек, в извилистых реках, ручьях или в других местах, где скорость течения замедляется. Островки нефтепродуктов могут образоваться в местах, где скапливаются деревья и мусор.
Перемещение и удаление нефтяных пятен от источника аварии будет в первую очередь определяться скоростью течения реки и направлением ветра. Под действием течения нефтепродукты переносится вниз по реке, а ветер сместит пятно к одному из берегов.

2. Ледовый период.

Перемещение пятна нефтепродуктов не зависит от направления ветра. Плавающие нефтепродукты, попав под лед, будут двигаться по подводной части ледяного поля, которая обычно имеет неровную поверхность. Подвижность нефтепродуктов уменьшается. Скорость перемещения пятна нефтепродуктов подо льдом составляет 10-50% от скорости потока в приледном слое воды толщиной 0,1 м, в зависимости от шероховатости нижней поверхности льда. При скоростях движения воды менее 0,1 м/с пятно нефтепродуктов под ледяным покровом может оставаться в неподвижном состоянии.

Распространение нефтепродуктов под ледяным покровом может находиться в виде отдельных капель, сливаться в небольшие пятна или сплошные ковры. При этом толщина этих образований не превышает 5-10 мм.

При нарастании льда неподвижные нефтепродукты вмерзают в лед и в дальнейшем находятся в толще льда в виде вмороженных капель или отдельных линз.

Характер распространения пятна нефтепродуктов зависит от формы русловой части реки, скорости течения и времени, прошедшего с момента начала аварии.

Локализация аварийного нефтезагрязнения воды и прибрежных территорий

Основным способом локализации распространения нефтепродуктов является установка боновых заграждений на локализационных площадках. На места установки боновых заграждений выезжают бригады аварийно-спасательных подразделений в соответствии с разработанным типовым или ситуационным планом. Технические средства - боновые заграждения, нефтесборщики для очистки загрязненных вод. На малых реках допускается создание земляных дамб с водопропускными трубами.

В ледовый период время локализации пятна нефтепродуктов зависит от времени на устройство во льду прорези и майны. Наименьшая допустимая толщина ледяного покрова для выполнения работ может определяться согласно РД153-39.4-114-01 (п. 5.7.39).

За границей боновых заграждений производят контроль наличия нефтепродуктов. В случае обнаружения нефтепродуктов устанавливают дополнительный рубеж боновых заграждений.

В период половодья состояние водного объекта характерно как для ледового, так и для безледового периода. В данном случае мероприятия и объемы работ планируются в зависимости от погодных условий, преобладания признаков ледового (безледового) периода и состояния подъездных путей к рубежам локализации.

Расстановка рубежей локализации производилась с учетом географических особенностей района, а также временем подхода нефтепродуктов к конкретному рубежу локализации. Выбор рубежа локализации определяется руководителем КЧС в зависимости от условий разлива, ситуации и метеорологических условий. При сложных метеорологических условиях рубежи локализации уточняются на основании конкретных гидрометеорологических условий.

Проведение АСНДР будет затруднено высокой температурой в очаге пожара, потребует применения специализированных формирований. Локализация и ликвидация последствий ЧС потребует привлечения значительных финансовых, материальных и людских ресурсов.

Ликвидация аварий н а газопроводе начинается , прежде всего, с отключения его поврежденного участка и перекрытия газопровода запорными устройствами (замками, задвижками), расположенными на нем и у газгольдерных станций. При срезах или разрывах труб газопровода низкого давления концы их заделывают деревянными пробками, обмазывают глиной или обматывают листовой резиной, трещины на трубах заваривают или заделывают, устанавливая муфты.
Временно трещины можно заделывать, обматывая трубы плотным бинтом и обмазывая глиной, или обматывая листовой резиной с накладкой хомутов.При воспламенении газа его давление в газопроводе снижают, после чего пламя гасят песком, землей, глиной, набрасывают на газопровод мокрый брезент, а затем засыпают землей и поливают водой.

Для поиска утечки газа из подземных трубопроводов используются служебные собаки. На загазованной местности во избежание взрыва газа запрещается зажигать спички, курить, пользоваться инструментом, вызывающим искрообразование, использовать машины и механизмы с работающими двигателями. Работы на газопроводах, находящихся под давлением, а также расположенных в помещениях, производят только инструментом из цветного металла. Стальной инструмент, чтобы исключить искрообразование, должен быть смазан минерализованной смазкой. Для освещения рабочего места на загазованных участках разрешается применять только аккумуляторные фонари во взрывобезопасном исполнении.

Значительную сложность представляет собой тушение пожара горючих газов , истекающих под давлением. Как правило, подавление горения в этих случаях достигается перекрытием газового потока. Нередко быстро перекрыть поток газа не удается и приходится тушить горящий факел. При пожарах природного газа, истекающего из труб диаметром до 150 мм с расходом 75 м 3 /с пламя имеет высоту до 80 м, диаметр - до 20 м, площадь - до 2000 м 2 . Наиболее эффективно тушение таких пожаров с помощью порошковых огнегасительных составов на основе бикарбонатов калия и натрия. Так, тушение пожара при вертикальном истечении газа с расходом до 75 м 3 /с достигается при подаче состава на основе бикарбоната калия из двух стволов с общим расходом порошка около 10 кг/с. Труднее всего поддается тушению горящий газ, истекающий вниз или в горизонтальном направлении. Удельный расход порошков при тушении такого пожара повышается на 30-50%. Воздействие газожидкостных средств на горящий факел, как правило, не позволяет потушить пожар. Гашение пламени в таком случае достигается лишь при снижении давления горючего газа, поступающего в очаг пожара. Одним из наиболее эффективных способов тушения такого пожара является введение газовых средств тушения в магистраль , по которой поступает горючий газ. В газопроводе просверливают отверстие и через него подают огнегасительный газ (двуокись углерода, инертные газы), расход которого должен в 2-5 раз превышать расход горючего газа

.

Одновременно с тушением пожара на газопроводе необходимо осуществлять его охлаждение . Во избежание разрушений, деформаций и разрывов нельзя допускать попадание воды на оборудование и газопровод, которые по условиям технологического процесса работают при высоких температурах. В таких случаях их защита и охлаждение согласовываются с инженерно-техническим персоналом объекта.

Особой осторожности требуют спасательные работы по ликвидации последствий аварий на продуктоводах, расположенных в замкнутых помещениях , резервуарах, шахтах, колодцах. Испаряющиеся СДЯВ могут достигнуть концентрации, опасной для жизни спасателей. Поэтому работать в таких условиях необходимо только с использованием изолирующего противогаза, спецодежды и спецобуви, подбираемых в зависимости от степени агрессивности транспортируемого продукта и его поражающих факторов. Испаряющийся продукт, соединяясь с воздухом, способен создать взрывоопасную смесь, поэтому, выполняя работы в замкнутых помещениях, нельзя пользоваться открытым огнем и инструментом, способным вызвать искрообразование. Особенностью тушения пожаров в замкнутых и подземных производственных помещениях является то, что пламя может повредить находящиеся в них электрооборудование и электропроводку. Если электрооборудование под напряжением и нет возможности его отключить, то тушение пожара следует производить не водой, а огнетушащими порошками и воздушно-механической пеной. В колодцах пожары эффективно тушатся при заполнении их инертными или другими огнетушащими газами.



Что еще почитать