Углерод химическая формула. Аллотропия и аллотропные модификации углерода

ОПРЕДЕЛЕНИЕ

Углерод - шестой элемент Периодической таблицы. Обозначение - С от латинского «carboneum». Расположен во втором периоде, IVА группе. Относится к неметаллам. Заряд ядра равен 6.

Углерод находится в природе как в свободном состоянии, так и в виде многочисленных соединений. Свободный углерод встречается в виде алмаза и графита. Кроме ископаемого угля, в недрах Земли находятся большие скопления нефти. В земной коре встречаются в огромных количествах соли угольной кислоты, особенно карбонат кальция. В воздухе всегда имеется диоксид углерода. Наконец, растительные и животные организмы состоят из веществ, в образовании которых участие принимает углерод. Таким образом, этот элемент - один из распространенных на Земле, хотя общее его содержание в земной коре составляет всего около 0,1% (масс.).

Атомная и молекулярная масса углерода

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии углерод существует в виде одноатомных молекул С, значения его атомной и молекулярной масс совпадают. Они равны 12,0064.

Аллотропия и аллотропные модификации углерода

В свободном состоянии углерод существует в виде алмаза, кристаллизующегося в кубической и гексагональной (лонсдейлит) системе, и графита, принадлежащего к гексагональной системе (рис. 1). Такие формы углерода, как древесный уголь, кокс или сажа имеют неупорядоченную структуру. Также есть аллотропные модификации, полученные синтетическим путем - это карбин и поликумулен - разновидности углерода, построенные из линейных цепных полимеров типа -C= C- или = C = C= .

Рис. 1. Аллотропные модификации углерода.

Известны также аллотропные модификации углерода, имеющие следующие названия: графен, фуллерен, нанотрубки, нановолокна, астрален, стеклоуглерож, колоссальные нанотрубки; аморфный углерод, углеродные нанопочки и углеродная нанопена.

Изотопы углерода

В природе углерод существует в виде двух стабильных изотопов 12 С (98,98%) и 13 С (1,07%). Их массовые числа равны 12 и 13 соответственно. Ядро атома изотопа углерода 12 С содержит шесть протонов и шесть нейтронов, а изотопа 13 С - такое же количество протонов и пять нейтронов.

Существует один искусственный (радиоактивный) изотоп углерода 14 Сс периодом полураспада равным 5730 лет.

Ионы углерода

На внешнем энергетическом уровне атома углерода имеется четыре электрона, которые являются валентными:

1s 2 2s 2 2p 2 .

В результате химического взаимодействия углерод может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

С 0 -2e → С 2+ ;

С 0 -4e → С 4+ ;

С 0 +4e → С 4- .

Молекула и атом углерода

В свободном состоянии углерод существует в виде одноатомных молекул С. Приведем некоторые свойства, характеризующие атом и молекулу углерода:

Сплавы углерода

Наиболее известные сплавы углерода во всем мире - это сталь и чугун. Сталь - это сплав железа с углеродом, содержание углерода в котором не превышает 2%. В чугуне (тоже сплав железа с углеродом) содержание углерода выше - от 2-х до 4%.

Примеры решения задач

ПРИМЕР 1

Задание Какой объем оксида углерода (IV) выделится (н.у.) при обжиге 500 г известняка, содержащего 0,1 массовую долю примесей.
Решение Запишем уравнение реакции обжига известняка:

CaCO 3 = CaO + CO 2 -.

Найдем массу чистого известняка. Для этого сначала определим его массовую долю без примесей:

w clear (CaCO 3) = 1 — w impurity = 1 - 0,1 = 0,9.

m clear (CaCO 3) = m(CaCO 3) ×w clear (CaCO 3);

m clear (CaCO 3) = 500 ×0,9 = 450 г.

Рассчитаем количество вещества известняка:

n(CaCO 3) = m clear (CaCO 3) / M(CaCO 3);

n(CaCO 3) = 450 / 100 = 4,5 моль.

Согласно уравнению реакции n(CaCO 3) :n(CO 2) = 1:1, значит

n(CaCO 3) = n(CO 2) = 4,5 моль.

Тогда, объем выделившегося оксида углерода (IV) будет равен:

V(CO 2) = n(CO 2) ×V m ;

V(CO 2) = 4,5 × 22,4 = 100,8 л.

Ответ 100,8 л

ПРИМЕР 2

Задание Сколько потребуется раствора, содержащего 0,05 массовых долей, или 5% хлороводорода, для нейтрализации 11,2 г карбоната кальция?
Решение Запишем уравнение реакции нейтрализации карбоната кальция хлороводородом:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 -.

Найдем количество вещества карбоната кальция:

M(CaCO 3) = A r (Ca) + A r (C) + 3×A r (O);

M(CaCO 3) = 40 + 12 + 3×16 = 52 + 48 = 100 г/моль.

n(CaCO 3) = m (CaCO 3) / M(CaCO 3);

n(CaCO 3) = 11,2 / 100 = 0,112 моль.

Согласно уравнению реакции n(CaCO 3) :n(HCl) = 1:2, значит

n(HCl) = 2 ×n(CaCO 3) = 2 ×0,224 моль.

Определим массу вещества хлороводорода, содержащуюся в растворе:

M(HCl) = A r (H) + A r (Cl) = 1 + 35,5 = 36,5 г/моль.

m(HCl) = n(HCl) ×M(HCl) = 0,224 × 36,5 = 8,176 г.

Рассчитаем массу раствора хлороводорода:

m solution (HCl) = m(HCl)× 100 / w(HCl);

m solution (HCl) = 8,176 × 100 / 5 = 163,52 г.

Ответ 163,52 г

Углерод (С) - шестой элемент периодической таблицы Менделеева с атомным весом 12. Элемент относится к неметаллам и имеет изотоп 14 С. Строение атома углерода лежит в основе всей органической химии, т. к. все органические вещества включают молекулы углерода.

Атом углерода

Положение углерода в периодической таблице Менделеева:

  • шестой порядковый номер;
  • четвёртая группа;
  • второй период.

Рис. 1. Положение углерода в таблице Менделеева.

Опираясь на данные из таблицы, можно заключить, что строение атома элемента углерода включает две оболочки, на которых расположено шесть электронов. Валентность углерода, входящего в состав органических веществ, постоянна и равна IV. Это значит, что на внешнем электронном уровне находится четыре электрона, а на внутреннем - два.

Из четырёх электронов два занимают сферическую 2s-орбиталь, а оставшиеся два - 2p-орбиталь в виде гантели. В возбуждённом состоянии один электрон с 2s-орбитали переходит на одну из 2p-орбиталей. При переходе электрона с одной орбитали на другую затрачивается энергия.

Таким образом, возбуждённый атом углерода имеет четыре неспаренных электрона. Его конфигурацию можно выразить формулой 2s 1 2p 3 . Это даёт возможность образовывать четыре ковалентные связи с другими элементами. Например, в молекуле метана (СН 4) углерод образует связи с четырьмя атомами водорода - одна связь между s-орбиталями водорода и углерода и три связи между p-орбиталями углерода и s-орбиталями водорода.

Схему строения атома углерода можно представить в виде записи +6C) 2) 4 или 1s 2 2s 2 2p 2 .

Рис. 2. Строение атома углерода.

Физические свойства

Углерод встречается в природе в виде горных пород. Известно несколько аллотропных модификаций углерода:

  • графит;
  • алмаз;
  • карбин;
  • уголь;
  • сажа.

Все эти вещества отличаются строением кристаллической решётки. Наиболее твёрдое вещество - алмаз - имеет кубическую форму углерода. При высоких температурах алмаз превращается в графит с гексагональной структурой.

Рис. 3. Кристаллические решётки графита и алмаза.

Химические свойства

Атомное строение углерода и его способность присоединять четыре атома другого вещества определяют химические свойства элемента. Углерод реагирует с металлами, образуя карбиды:

  • Са + 2С → СаС 2 ;
  • Cr + C → CrC;
  • 3Fe + C → Fe 3 C.

Также реагирует с оксидами металлов:

  • 2ZnO + C → 2Zn + CO 2 ;
  • PbO + C → Pb + CO;
  • SnO 2 + 2C → Sn + 2CO.

При высоких температурах углерод реагирует с неметаллами, в частности с водородом, образуя углеводороды:

С + 2Н 2 → СН 4 .

С кислородом углерод образует углекислый газ и угарный газ:

  • С + О 2 → СО 2 ;
  • 2С + О 2 → 2СО.

Угарный газ также образуется при взаимодействии с водой:

C + H 2 O → CO + H 2 .

Концентрированные кислоты окисляют углерод, образуя углекислый газ:

  • 2H 2 SO 4 + C → CO 2 + 2SO 2 + 2H 2 O;
  • 4HNO 3 + C → CO 2 + 4NO 2 + 2H 2 O.

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 75.

Углерод является шестым элементом периодической системы Менделеева. Его атомный вес равен 12.


Углерод находится во втором периоде системы Менделеева и в четвёртой группе этой системы.


Номер периода сообщает нам, что шесть электронов углерода располагаются на двух энергетических уровнях.


А четвёртый номер группы говорит, что на внешнем энергетическом уровне у углерода находится четыре электрона. Два из них это спаренные s -электроны, а два другие – не спаренные р -электроны.


Структура внешнего электронного слоя атома углерода может быть выражена следующими схемами:

Каждая ячейка вэтих схемах означает отдельную электронную орбиталь, стрелка – элетрон, находящийся на орбитали. Две стрелки внутри одной ячейки – это два электрона, находящиеся на одной орбитали, но имеющие противоположно направленные спины.


При возбуждении атома (при сообщени ему энергии) один из спаренных S -электронов занимает р -орбиталь.


Возбуждённый атом углерода может учавствовать в образовании четырёх ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет валентность, равную четырем.


Так, простейшее органическое соединение углеводород метан имеет состав СН 4 . Строение его может быть выражено структурной или электронной формулами:



Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку, а атомы водорода – устойчивую двухэлектронную оболочку.


Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырёхугольной пирамиды), а четыре соединённых с ним атома (в случае метана – четыре атома водорода) в вершинах тетраэдра.



Углы между направлениями любой пары связей одинаковы и составляют 109 градусов 28 минут.


Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s - и трёх p -орбиталей в результате sp 3 -гибридизации образуются чтыре симметрично расположенные в пространстве гибридные sp 3 -орбитали, вытянутые в направлении к вершинам тетраэдра.

Особенность свойств углерода.

Количество электронов на внешнем энергетическом уровне является главным фактором, определяющим химические свойства элемента.


В левой части периодической системы расположены элементы с малозаполненным внешним электронным уровнем. У элементов первой группы на внешнем уровне один электрон, у элементов второй группы – два.


Элементы этих двух групп являются металлами . Они легко окисляются, т.е. теряют свои внешние электроны ипревращаются в положительные ионы.


В правой части периодической системы, наоборот, находятся неметаллы (окислители) . В сравнении с металлами они обладают ядром с большим числом протонов. Такое массивное ядро обеспечивает гораздо более сильное притяжение своего электронного облака.


Такие элементы с большим трудом теряют свои электроны, зато непрочь присоединить к себе дополнительные электроны других атомов, т.е. окислить их, а самим, при этом, превратиться в отрицательный ион.


Металлические свойства элементов по мере возрастания номера группы в периодической системе ослабляются, а их способность окислять другие элементы увеличивается.


Углерод находится в четвёртой группе, т.е. как раз посередине между металлами, легко отдающими электроны, и неметаллами, легко эти электроны присоединяющими.


По этой причине углерод не обладает ярко выраженной склонности отдавать или присоединять электроны .

Углеродные цепи.

Исключительным свойством углерода, обуславливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные схемы практически неограниченной длины.


Кроме углерода, цепи из одинаковых атомов образует его аналог из IV группы – кремний. Однако такие цепи содержат не более шести атомов Si. Известны длинные цепи из атомов серы, но содержащие их соединения непрочны.


Валентности атомов углерода, не задействованные для взаимного соединения, используются на присоединение других атомов или групп (в углеводородах – для присоединения водорода).


Так углеводороды этан (С 2 Н 6 ) и пропан (С 3 Н 8 ) содержат цепи соответственно из двух и трёх атомов углерода. Строение их выражают следующие структурные и электронные формулы:



Известны соединения, содержащие в цепях сотни и более атомов углерода.


Вследствии тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно. Причём, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Такая структура цепей даёт возможность сближаться концевым или другим не смежным атомам углерода. В результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:



Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы.

Простые и кратные связи.

Ковалентные связи между атомами углерода, образованные одной парой обобщённых электронов, называются простыми связями.



Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными – двойными или тройными связями. Эти связи можно изобразить следующим образом:



Простейшие соединения, содержащие кратные связи – углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):



Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен – первые представители двух гомологических рядов – этиленовых и ацетиленовых углеводородов.

МОУ «Никифоровская средняя общеобразовательная школа №1»

Углерод и его основные неорганические соединения

Реферат

Выполнил: ученик 9В класса

Сидоров Александр

Учитель: Сахарова Л.Н.

Дмитриевка 2009


Введение

Глава I. Всё об углероде

1.1. Углерод в природе

1.2. Аллотропные модификации углерода

1.3. Химические свойства углерода

1.4. Применение углерода

Глава II. Неорганические соединения углерода

Заключение

Литература


Введение

Углерод (лат. Carboneum) С – химический элемент IV группы периодической системы Менделеева: атомный номер 6, атомная масса 12,011(1). Рассмотрим строение атома углерода. На наружном энергетическом уровне атома углерода находятся четыре электрона. Изобразим графически:


Углерод был известен с глубокой древности, и имя первооткрывателя этого элемента неизвестно.

В конце XVII в. флорентийские ученые Аверани и Тарджони пытались сплавить несколько мелких алмазов в один крупный и нагрели их с помощью зажигательного стекла солнечными лучами. Алмазы исчезли, сгорев на воздухе. В 1772 г. французский химик А. Лавуазье показал, что при сгорании алмаза образуется СО 2 . Лишь в 1797 г. английский ученый С. Теннант доказал идентичность природы графита и угля. После сгорания равных количеств угля и алмаза объемы оксида углерода (IV) оказались одинаковыми.

Многообразие соединений углерода, объясняющееся способностью его атомов соединяться друг с другом и атомами других элементов различными способами, обуславливает особое положение углерода среди других элементов.


Глава I . Всё об углероде

1.1. Углерод в природе

Углерод находится в природе, как в свободном состоянии, так и в виде соединений.

Свободный углерод встречается в виде алмаза, графита и карбина.

Алмазы очень редки. Самый большой из известных алмазов – «Куллинан» был найден в 1905 г. в Южной Африке, весил 621,2 г и имел размеры 10×6,5×5 см. В Алмазном фонде в Москве хранится один из самых боль­ших и красивых алмазов в мире – «Орлов» (37,92 г).

Свое название алмаз получил от греч. «адамас» – непобедимый, несокрушимый. Самые значительные месторождения алмазов находятся в Южной Африке, Бразилии, в Якутии.

Крупные залежи графита находятся в ФРГ, в Шри-Ланке, в Сибири, на Алтае.

Главными углеродсодержащими минералами являются: магнезит МgСО 3 , кальцит (известковый шпат, известняк, мрамор, мел) СаСО 3 , доломит СаМg(СО 3) 2 и др.

Все горючие ископаемые – нефть, газ, торф, каменные и бурые угли, сланцы – построены на углеродной основе. Близки по составу к углероду некоторые ископаемые угли, содержащие до 99% С.

На долю углерода приходится 0,1% земной коры.

В виде оксида углерода (IV) СО 2 углерод входит в состав атмосферы. В гидросфере растворено большое количество СО 2 .

1.2. Аллотропные модификации углерода

Элементарный углерод образует три аллотропные модификации: алмаз, графит, карбин.

1. Алмаз – бесцветное, прозрачное кристаллическое вещество, чрезвычайно сильно преломляющее лучи света. Атомы углерода в алмазе находятся в состоянии sр 3 -гибридизации. В возбуждённом состоянии происходит распаривание валентных электронов в атомах углерода и образование четырёх неспаренных электронов. При образовании химических связей электронные облака приобретают одинаковую вытянутую форму и располагаются в пространстве так, что их оси оказываются направленными к вершинам тетраэдра. При перекрывании вершин этих облаков с облаками других атомов углерода возникают ковалентные связи под углом 109°28", и образуется атомная кристаллическая решетка, характерная для алмаза.

Каждый атом углерода в алмазе окружён четырьмя другими, расположенными от него в направлениях от центра тетраэдров к вершинам. Расстояние между атомами в тетраэдрах равно 0,154 нм. Прочность всех связей одинакова. Таким образом, атомы в алмазе «упакованы» очень плотно. При 20°С плотность алмаза составляет 3,515 г/см 3 . Этим объясняется его исключительная твердость. Алмаз плохо проводит электрический ток.

В 1961 г. в Советском Союзе было начато промышленное производство синтетических алмазов из графита.

При промышленном синтезе алмазов используются давления в тысячи МПа и температуры от 1500 до 3000°С. Процесс ведут в присутствии катализаторов, которыми могут служить некоторые металлы, например Ni. Основная масса образующихся алмазов – небольшие кристаллы и алмазная пыль.

Алмаз при нагревании без доступа воздуха выше 1000°С превращается в графит. При 1750°С превращение алмаза в графит происходит быстро.

Структура алмаза

2. Графит – серо-чёрное кристаллическое вещество с металлическим блеском, жирное на ощупь, по твердости уступающее даже бумаге.

Атомы углерода в кристаллах графита находятся в состоянии sр 2 -гибридизации: каждый из них образует три ковалентные σ-связи с соседними атомами. Углы между направлениями связей равны 120°. В результате образуется сетка, составленная из правильных шестиугольников. Расстояние между соседними ядрами атомов углерода внутри слоя составляет 0,142 нм. Четвёртый электрон внешнего слоя каждого атома углерода в графите занимает р-орбиталь, не участвующую в гибридизации.

Негибридные электронные облака атомов углерода ориентированы перпендикулярно плоскости слоя, и перекрываясь друг с другом, образуют делокализованные σ-связи. Соседние слои в кристалле графита находятся друг от друга на расстоянии 0,335 нм и слабо связаны между собой, в основном силами Ван-дер-Ваальса. Поэтому графит имеет низкую механическую прочность и легко расщепляется на чешуйки, которые сами по себе очень прочны. Связь между слоями атомов углерода в графите частично имеет металлический характер. Этим объясняется тот факт, что графит хорошо проводит электрический ток, но все, же не так хорошо, как металлы.

Структура графита

Физические свойства в графите сильно различаются по направлениям – перпендикулярному и параллельному слоям атомов углерода.

При нагревании без доступа воздуха графит не претерпевает никаких изменений до 3700°С. При указанной температуре он возгоняется, не плавясь.

Искусственный графит получают из лучших сортов каменного угля при 3000°С в электрических печах без доступа воздуха.

Графит термодинамически устойчив в широком интервале температур и давлений, поэтому он принимается в качестве стандартного состояния углерода. Плотность графита составляет 2,265 г/см 3 .

3. Карбин – мелкокристаллический порошок чёрного цвета. В его кристаллической структуре атомы углерода соединены чередующимися одинарными и тройными связями в линейные цепочки:

−С≡С−С≡С−С≡С−

Это вещество впервые получено В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым в начале 60-х годов XX века.

Впоследствии было показано, что карбин может существовать в разных формах и содержит как полиацетиленовые, так и поликумуленовые цепочки, в которых углеродные атомы связаны двойными связями:

С=С=С=С=С=С=

Позднее карбин был найден в природе – в метеоритном веществе.

Карбин обладает полупроводниковыми свойствами, под действием света его проводимость сильно увеличивается. За счёт существования разных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке физические свойства карбина могут меняться в широких пределах. При нагревании без доступа воздуха выше 2000°С карбин устойчив, при температурах около 2300°С наблюдается его переход в графит.

Природный углерод состоит из двух изотопов

(98,892%) и (1,108%). Кроме того, в атмосфере обнаружены незначительные примеси радиоактивного изотопа , который получают искусственным путём.

Раньше считали, что древесный уголь, сажа и кокс близки по составу чистому углероду и отличающиеся по свойствам от алмаза и графита, представляют самостоятельную аллотропную модификацию углерода («аморфный углерод»). Однако было установлено, что эти вещества состоят из мельчайших кристаллических частиц, в которых атомы углерода связаны так же, как в графите.

4. Уголь – тонко измельчённый графит. Образуется при термическом разложении углеродсодержащих соединений без доступа воздуха. Угли существенно различаются по свойствам в зависимости от вещества, из которого они получены и способа получения. Они всегда содержат примеси, влияющие на их свойства. Наиболее важные сорта угля – кокс, древесный уголь, сажа.

Кокс получается при нагревании каменного угля без доступа воздуха.

Древесный уголь образуется при нагревании дерева без доступа воздуха.

Сажа – очень мелкий графитовый кристаллический порошок. Образуется при сжигании углеводородов (природного газа, ацетилена, скипидара и др.) при ограниченном доступе воздуха.

Активные угли - пористые промышленные адсорбенты, состоящие в основном из углерода. Адсорбцией называют поглощение поверхностью твёрдых веществ газов и растворённых веществ. Активные угли получают из твердого топлива (торфа, бурого и каменного угля, антрацита), дерева и продуктов его переработки (древесного угля, опилок, отходов бумажного производства), отходов кожевенной промышленности, материалов животного происхождения, например костей. Угли, отличающиеся высокой механической прочностью, производят из скорлупы кокосовых и других орехов, из косточек плодов. Структура углей представлена порами всех размеров, однако адсорбционная ёмкость и скорость адсорбции определяются содержанием микропор в единице массы или объёма гранул. При производстве активного угля вначале исходный материал подвергают термической обработке без доступа воздуха, в результате которой из него удаляется влага и частично смолы. При этом образуется крупнопористая структура угля. Для получения микропористой структуры активацию производят либо окислением газом или паром, либо обработкой химическими реагентами.

Химические свойства Ковалентный радиус 77 пм Радиус иона 16 (+4e) 260 (-4e) пм Электроотрицательность 2,55 (шкала Полинга) Степени окисления 4 , 3 , 2, 1 , , , , , -4 Энергия ионизации
(первый электрон) 1085,7 (11,25) кДж /моль (эВ) Термодинамические свойства простого вещества Плотность (при н. у.) 2,25 (графит) г/см³ Температура плавления 3550 °C Температура кипения 5003 K; 4830 °C Критическая точка 4130 , 12 МПа Молярная теплоёмкость 8,54 (графит) Дж/(K·моль) Молярный объём 5,3 см ³/моль Кристаллическая решётка простого вещества Структура решётки гексагональная (графит), кубическая (алмаз) Параметры решётки a=2,46; c=6,71 (графит); а=3,567 (алмаз) Отношение c /a 2,73 (графит) Температура Дебая 1860 (алмаз) Прочие характеристики Теплопроводность (300 K) 1,59 Вт/(м·К) Номер CAS 7440-44-0 Эмиссионный спектр

Способность углерода образовывать полимерные цепочки порождает огромный класс соединений на основе углерода, называемых органическими, которых значительно больше, чем неорганических, и изучением которых занимается органическая химия .

История

На рубеже XVII-XVIII вв. возникла теория флогистона, выдвинутая Иоганном Бехером и Георгом Шталем . Эта теория признавала наличие в каждом горючем теле особого элементарного вещества - невесомого флюида - флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь - это почти чистый флогистон. Именно этим объясняли, в частности, «флогистирующее» действие угля, - его способность восстанавливать металлы из «известей» и руд. Поздние флогистики, Реомюр, Бергман и другие, уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым «чистый уголь» был признан Антуаном Лавуазье , исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво , Лавуазье, Бертолле и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерод» (carbone) вместо французского «чистый уголь» (charbone pur). Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье.

Происхождение названия

В начале XIX века в русской химической литературе иногда применялся термин «углетвор» (Шерер, 1807; Севергин , 1815); с 1824 года Соловьёв ввёл название «углерод». Соединения углерода имеют в названии часть карб(он) - от лат. carbō (род. п. carbōnis ) «уголь».

Физические свойства

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Изотопы углерода

Природный углерод состоит из двух стабильных изотопов - 12 С (98,93 %) и 13 С (1,07 %) и одного радиоактивного изотопа 14 С (β-излучатель, Т ½ = 5730 лет), сосредоточенного в атмосфере и верхней части земной коры. Он постоянно образуется в нижних слоях стратосферы в результате воздействия нейтронов космического излучения на ядра азота по реакции: 14 N (n, p) 14 C, а также, с середины 1950-х годов, как техногенный продукт работы АЭС и в результате испытания водородных бомб .

Аллотропные модификации углерода

Кристаллический углерод

Аморфный углерод

  • Ископаемый уголь: антрацит и Ископаемый уголь .
  • Кокс каменноугольный , нефтяной и др.

На практике, как правило, перечисленные выше аморфные формы являются химическими соединениями с высоким содержанием углерода, а не чистой аллотропной формой углерода.

Кластерные формы

Структура

Жидкий углерод существует только при определённом внешнем давлении. Тройные точки: графит - жидкость - пар Т = 4130 K, р = 10,7 МПа и графит - алмаз - жидкость Т ≈ 4000 K, р ≈ 11 ГПа. Линия равновесия графит - жидкость на фазовой р , Т -диаграмме обладает положительным наклоном, переходящим по мере приближения к тройной точке графит - алмаз - жидкость в отрицательный, что связано с уникальными свойствами атомов углерода создавать углеродные молекулы, состоящие из различного количества атомов (от двух до семи). Наклон линии равновесия алмаз - жидкость, в отсутствие прямых экспериментов в области очень высоких температур (> 4000-5000 K) и давлений (> 10-20 ГПа), долгие годы считался отрицательным. Проведённые японскими исследователями прямые эксперименты и обработка полученных экспериментальных данных с учётом аномальности высокотемпературной теплоёмкости алмаза показали, что наклон линии равновесия алмаз - жидкость положителен, т. е. алмаз тяжелее своей жидкости (в расплаве он будет тонуть, а не всплывать как лёд в воде).

Ультрадисперсные алмазы (наноалмазы)

В 1980-е годы в СССР было обнаружено, что в условиях динамической нагрузки углеродсодержащих материалов могут образовываться алмазоподобные структуры, получившие название ультрадисперсных алмазов (УДА). В настоящее время всё чаще применяется термин «наноалмазы ». Размер частиц в таких материалах составляет единицы нанометров. Условия образования УДА могут быть реализованы при детонации взрывчатых веществ со значительным отрицательным кислородным балансом , например, смесей тротила с гексогеном . Такие условия могут быть реализованы также при ударах небесных тел о поверхность Земли в присутствии углеродсодержащих материалов (органика, торф , уголь и пр.). Так, в зоне падения Тунгусского метеорита в лесной подстилке были обнаружены УДА.

Карбин

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин . Цепи имеют либо полиеновое строение (−C≡C−), либо поликумуленовое (=C=C=). Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке, размерами ячеек и плотностью (2,68-3,30 г/см³). Карбин встречается в природе в виде минерала чаоита (белые прожилки и вкрапления в графите) и получен искусственно - окислительной дегидрополиконденсацией ацетилена , действием лазерного излучения на графит, из углеводородов или CCl 4 в низкотемпературной плазме.

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода, уложенных параллельно друг другу.

Карбин - линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно или тройными и одинарными связями (полиеновое строение), либо постоянно двойными связями (поликумуленовое строение). Это вещество впервые получено советскими химиками В. В. Коршаком, А. М. Сладковым, В. И. Касаточкиным и Ю. П. Кудрявцевым в начале 1960-х годов в Академии наук СССР . Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение - в фотоэлементах .

Фуллерены и углеродные нанотрубки

Углерод известен также в виде кластерных частиц С 60 , С 70 , C 80 , C 90 , C 100 и подобных (фуллерены), а также графенов , нанотрубок и сложных структур - астраленов .

Аморфный углерод (строение)

В основе строения аморфного углерода лежит разупорядоченная структура монокристаллического (всегда содержит примеси) графита. Это кокс , бурые и каменные угли, техуглерод , сажа , активный уголь .

Графен

Графен - двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, соединенных посредством sp² связей в гексагональную двумерную кристаллическую решётку.

Нахождение в природе

Было оценено, что Земля в целом состоит из 730 ppm углерода, с содержанием 2000 ppm в ядре и 120 ppm в мантии и коре. Так как масса Земли 5,972⋅10 24 kg , то это предполагает наличие 4360 миллионов гигатонн углерода.



Что еще почитать