Логико-вероятностный метод. Логико-вероятностный метод расчета надежности сложных систем Логико вероятностная модель надежности

электроснабжения с помощью дерева отказов

Логико-вероятностный метод с использованием дерева отказов является дедуктивным (от общего к частному) и применяется в тех случаях, когда число различных отказов системы относительно невелико. Применение дерева отказов для описания причин отказа системы облегчает переход от общего определения отказа к частным определениям отказов и режимов работы её элементов, понятным специалистам-разработчикам как самой системы, так и элементов. Переход от дерева отказов к логической функции отказа открывает возможности для анализа причин отказа системы на формальной основе. Логическая функция отказа позволяет получить формулы для аналитического расчёта частоты и вероятности отказов системы по известной частоте и вероятностям отказов элементов. Использование аналитических выражений при расчёте показателей надёжности даёт основание к применению формул теории точности для оценки среднеквадратической погрешности результатов.

Отказ функционирования объекта как сложное событие является суммой события отказа работоспособности и события , состоящего в появлении критических внешних воздействий. Условие отказа функционирования системы формулируется специалистами в области конкретных систем на основе технического проекта системы и анализа её функционирования при возникновении различных событий при помощи высказываний .

Высказывания могут быть конечными, промежуточными, первичными, простыми, сложными. Простое высказывание относится к событию или состоянию, которые сами не рассматриваются ни как логическая сумма «ИЛИ», ни как логическое произведение «И» других событии или состояний. Сложное высказывание, представляющее собой дизъюнкцию нескольких высказываний (простых или сложных), обозначается оператором «ИЛИ», связывающим высказывания низшего уровня с высказываниями высшего уровня (рис.3.15,а). Сложное высказывание, представляющее собой конъюнкцию нескольких высказываний (простых или сложных), обозначается оператором «И», связывающим высказывания низшего уровня с высказываниями высшего уровня (рис.3.15,б).

Рис.3.15. Элементы представления логических схем

Высказывания удобно кодировать так, чтобы по коду можно было судить о том, простое оно или сложное, на каком уровне от конечного расположено и что собой представляет (событие, состояние, отказ срабатывания, тип элемента).

В теории графов деревом называется связный граф, не содержащий замкнутых контуров. Деревом отказов называют логическое дерево (рис. 3.16), в котором дуги представляют события отказа на уровне системы, подсистем или элементов, а вершины – логические операции, связывающие исходные и результирующие события отказов.

Рис. 3.16. Пример построения дерева отказов

Построение дерева отказов начинается с формулировки конечного высказывания об отказе системы. Для характеристики безотказности системы конечное высказывание относят к событию, которое приводит к нарушению функционирования в рассматриваемом интервале времени, при заданных условиях. То же для характеристики готовности.

Пример 8 . Построим дерево отказов для схемы сети, приведенной на рис.3.17.

Рис.3.17. Схема сети

Подстанции В и С питаются от подстанции А . Конечным событием дерева отказов является отказ системы в целом. Этот отказ определяется как событие, заключающееся в том, что

1) либо подстанция В , либо подстанция С полностью теряют питание;

2) мощность для питания суммарной нагрузки подстанций В и С приходится передавать по одной-единственной линии.

Исходя из определения конечного события и принципиальной схемы системы, строим дерево отказов (вниз от конечного события) (рис. 3.18). Цель анализа дерева отказов состоит в том, чтобы определить вероятность конечного события. Поскольку конечное событие есть отказ системы, анализ дает вероятность Р (F ).

Метод анализа основан на нахождении и расчете множеств минимальных сечений. Сечением называют такое множество элементов, суммарный отказ которых приводит к отказу системы. Минимальное сечение – такое множество элементов, из которого нельзя удалить ни одного элемента, иначе оно перестаёт быть сечением.

Передвигаясь на один уровень ниже от вершинного (конечного) события, проходим через узел «ИЛИ», который указывает на существование трёх сечений: {P }, {Q }, {R } (Р, Q , R – события отказов). Каждое из этих сечений может быть разделено далее на большее число сечений, но может выясниться, что отказ сечений обуславливается несколькими событиями, в зависимости от того, какой тип логического узла встречается на пути следования.

Рис.3.18. Дерево отказов системы по схеме рис. 3.17:

–отказы подсистем, которые можно анализировать далее;

Например, {Q} сначала превращается в сечение {3,Т }, затем Т разделяется на сечения {Х,У }, в результате вместо одного сечения {3,Т } появляются два: {3,X }, {3,У }.

На каждом из последующих шагов выявляются множества сечений:

Минимальными сечениями являются выделенные сечения {3,4,5}, {2,3}, {1,3}, {1,2}. Сечение {1,2,3} не минимальное, поскольку {1,2} – тоже сечение. На последнем шаге множества сечений состоят исключительно из элементов.

Метод основан на математическом аппарате алгебры логики. Расчет надежности системы управления предполагает определение связи между сложным событием (отказ системы) и событиями, от которых оно зависит (отказы элементов системы). Следовательно, расчеты на надежность основаны на проведении операций с событиями и высказываниями, в качестве которых принимаются утверждения о работоспособности или отказе элемента (системы). Каждый элемент системы представляется логической переменной, принимающей значение 1 или 0.

События и высказывания при помощи операций дизъюнкции, конъюнкции и отрицания объединяются в логические уравнения, соответствующие условию работоспособности системы. Составляется логическая функция работоспособности. Расчет, основанный на непосредственном использовании логических уравнений, называется логико-вероятностным и выполняется в семь этапов:

1. Словесная формулировка условий работоспособности объекта. Описывается зависимость работоспособности информационной системы от состояния ее отдельных элементов.

2. Составление логической функции работоспособности. Представляет собой логическое уравнение, соответствующее условию работоспособности системы управления

которое выражено в дизъюнктивной форме, например:

где x i – условие работоспособности i- го элемента Fл; X i = 1 – работоспособное состояние, X i = 0 – неработоспособное состояние.

3. Приведение логической функции работоспособности F Л к ортогональной бесповторной форме F ЛО. Сложную логическую функцию работоспособности необходимо привести к ортогональной бесповторной форме.

Функция вида (2.2) называется ортогональной, если все ее члены D i попарно ортогональны (то есть, их произведение равно нулю), и бесповторной, если каждый ее член D i состоит из букв х i , с разными номерами (то есть отсутствуют повторяющиеся аргументы), например: произведение элементарных конъюнкций х 1 , х 2 , x 4 и х 3 , x 2 равно нулю, так как одна из них содержит x 2 , а другая – x 2 , следовательно, они ортогональны; D 1 = x 1 ×x 2 ×x 2 , где x 2 и x 2 имеют один и тот же номер, поэтому член D 1 не является бесповторным.

– ортогональная бесповторная форма;

– ортогональная, но не бесповторная форма.

Функцию F л можно преобразовать к ортогональной бесповторной форме F ло, используя законы и правила преобразования сложных высказываний. При расчетах наиболее употребительны правила:

1) x 1 ×x 2 = x 2 ×x 1 ;

4. Арифметизация F ло. По найденной ортогональной бесповторной логической функции работоспособности F ЛО определяется арифметическая функция F a (2.3).

где A i – арифметическая форма членов D i функции F ло.
Арифметизация членов D i , в общем виде содержащих операции дизъюнкции, конъюнкции и отрицания, осуществляется заменой логических операций арифметическими по правилам:

5. Определение вероятности безотказной работы системы.
Вероятность безотказной работы системы устанавливается как вероятность истинности логической функции работоспособности, представленной в ортогональной бесповторной форме, и вычисляется как сумма вероятностей истинности всех ортогональных членов этой функции алгебры логики. Все события (высказывания) заменяются их вероятностями (вероятностями безотказной работы соответствующих элементов).

ЛВМ возник в результате исследований проблем безопасности сложных систем. С его помощью можно оценить вероятность отказа сложной системы.

ЛВМ относится к аксиоматическим методам принятия решений в условиях стохастической неопределенности. Он позволяет снизить эту неопределенность своим доказательным подходом и результатами экспериментов – вероятностными характеристиками альтернатив.

В пособии ЛВМ рассмотрен на примере решения задачи выбора наиболее надежной информационной системы.

Пусть множество альтернатив – это множество показателей рисков информационных систем (ИС). Требуется найти такую ИС, риск которой минимален.

Под риском системы рассматривается сумма рисков ресурсов, из которых она состоит:

где R i – риск i -го ресурса, n – количество ресурсов. С каждым ресурсом связано множество опасных состояний (ОС), реализация которых приводит к отказу данного ресурса.

В качестве примеров ресурсов ИС могут выступать информационные ресурсы, сервисы, физические или аппаратные ресурсы, программное обеспечение. Одним из примеров информационного ресурса может выступать база данных ИС.

Под риском i-го ресурса понимается сумма рисков, связанных с реализацией опасных состояний данного ресурса:

где r i j – риск реализации j -го опасного состояния i -го ресурса, ; M i – количество опасных состояний i -го ресурса.

Примерами ОС для ресурса «БД» являются нарушение конфиденциальности информации, полная или частичная потеря информации из-за выхода из строя носителя информации, нарушение доступа.

Под риском реализации j-го опасного состояния i-го ресурса понимается произведение вероятности P ij и стоимости потерь C ij от реализации данного опасного состояния ресурса:

.

Таким образом, задачу оценки риска системы можно разбить на следующие этапы:

1. описание структуры ресурсов системы;

2. описание множества опасных состояний ресурсов системы;

3. оценка вероятностей P ij реализации опасных состояний, в том числе, выявление меры влияния угроз на реализацию опасных состояний;

4. оценка стоимости потерь C ij от реализации опасных состояний.

Основные положения логико-вероятностного метода

Логико-вероятностный метод анализа безопасности сложных технических систем был предложен в 70-х годах 20 века
И. А. Рябининым. Основная идея данного метода состоит в сочетании логического и вероятностного подходов при оценке показателей надежности сложных технических, экономических, социальных систем и других систем .

В ЛВМ в качестве базовых используются понятия опасного состояния системы и опасности – способности системы переходить в опасное состояние. Описание опасного состояния системы начинается с составления сценария опасного состояния (ОС), который строится с использованием операций дизъюнкция и конъюнкция над инициирующими условиями и событиями .

В качестве инициирующих условий и событий выступают отказы одного или нескольких элементов системы. Каждому элементу системы ставится в соответствие логическая переменная x k () с двумя возможными состояниями (например, работоспособности/отказа, готовности/неготовности и т.п.) c заданными вероятностными параметрами этих состояний p k и q k =1-p k .

Сценарий является основой для составления логической функции, или функции алгебры логики (ФАЛ), описывающей опасное состояние системы.

Следующим шагом является преобразование функции алгебры логики к вероятностной функции, которая в дальнейшем используется для получения количественной оценки вероятности реализации опасного состояния.

Таким образом, с одной стороны, метод предоставляет механизм для формализации множества опасных состояний системы, а, с другой стороны, – теоретически обоснованный подход к количественной оценке риска системы.

Для системы, состоящей из различных ресурсов, ЛВМ используется с целью получения количественных оценок вероятностей реализации опасных состояний для каждого вида ресурсов. В свою очередь, каждый ресурс в ЛВМ также рассматривается как отдельная система.

Постановка задачи оценки вероятностей реализации опасных состояний ресурса

Дано:

1. Ресурс с номером i , для которого выделены опасные состояния S ij , , где m - число возможных состояний.

2. Структура ОС и вероятности инициирующих событий (угроз) x k , .

Требуется найти:

Вероятности P ij реализации опасных состояний S ij , .

Алгоритм решения

Шаг 1. Составление сценария опасного состояния S ij .

Шаг 2. Построение функции алгебры логики (ФАЛ) с использованием операций конъюнкция и дизъюнкция на основе сценария опасного состояния S ij .

Шаг 3. Построение вероятностной функции (ВФ) на основе функции алгебры логики.

Шаг 4. Расчет вероятности P ij реализации опасного состояния с помощью вероятностной функции.

Теоретические основы ЛВМ

В настоящее время математическая логика и теория вероятностей объединяются на основе логико-вероятностного исчисления . При этом предполагается, что теория вероятностей позволяет количественно оценивать надежность или безопасность систем, структура которых описывается средствами математической логики.

Основной проблемой в практическом применении ЛВМ является преобразование произвольных ФАЛ к формам перехода к полному замещению (ФППЗ). Для того чтобы сделать это преобразование стандартным и математически строгим, необходимо обратиться к специальному теоретическому аппарату, основные понятия и теоремы которого будут приведены ниже.

Будем полагать, что каждому элементу системы ставится в соответствие логическая переменная x k , () с двумя возможными состояниями (работоспособности/отказа, готовности/не готовности и т.п.) c заданными вероятностными параметрами этих состояний p k и q k =1-p k :

Кроме того, делается предположение, что все события x k являются независимыми в совокупности и что на рассматриваемом интервале времени работы системы исходные параметры законов распределений элементов не изменяются.

Выражение вида называется элементарной конъюнкцией K ранга r . Выражение вида , где – элементарные конъюнкции различных рангов, называется дизъюнктивной нормальной формой (ДНФ). Если функция записана в ДНФ, причем ранг каждой элементарной конъюнкции равен n , то такая ДНФ называется совершенной дизъюнктивной нормальной формой (СДНФ).

Выражение вида называется элементарной дизъюнкцией ранга r .

Две элементарные конъюнкции называются ортогональными , если их произведение равно нулю (пример: и ).

ДНФ называется ортогональной дизъюнктивной нормальной формой (ОДНФ), если все ее члены попарно ортогональны.

Бесповторной ДНФ (БДНФ) называется такая ДНФ, в которой каждая логическая переменная встречается ровно один раз.

Правила де Моргана позволяют логическое умножение выразить через отрицание логической суммы инверсий высказываний, а логическую сумму – через отрицание логического произведения инверсных высказывания. В дальнейшем они будут использоваться для приведения ФАЛ к специальному виду:

и

Вероятностной функцией (ВФ) будем называть вероятность истинности ФАЛ:

P (f (x 1 , x 2 , …, x h )=1 )

Функции алгебры логики, допускающие непосредственный переход к вероятностной функции заменой логических переменных вероятностями, а логических операций соответствующими арифметическими операциями, назовем формами перехода к замещению (ФПЗ).

Формами перехода к полному замещению (ФППЗ) называются ФПЗ, в которых производится замещение одновременно всех логических переменных.

Булевой разностью функции по аргументу x k называется

где символом « » обозначена логическая операция «сумма по модулю два».

Функция называется монотонной , если для любых наборов (a 1 , …, a h ) и (b 1 , …, b h ), таких, что , (k=1,2,…,h ) имеет место соотношение f (a 1 , …, a h ) f (b 1 , …, b h ). Далее рассмотрим ряд основных теорем.

Теорема 1. Частная производная от вероятности истинности монотонной ФАЛ по вероятности истинности аргумента x k численно равна вероятности истинности булевой разности этой функции по аргументу x k :

Теорема 2. Вероятность истинности произвольной ФАЛ, представленной в ОДНФ, равна сумме вероятностей истинности всех ортогональных членов этой ФАЛ:

,

где O u – не только элементарные конъюнкции ОДНФ, но и любые ФАЛ, попарно ортогональные.

Теорема 3. Дизъюнкция ортогональных бесповторных форм в базисе конъюнкция-отрицание является формой перехода к полному замещению.

В настоящее время известно несколько ФППЗ – это совершенная дизъюнктивная нормальная форма (СДНФ), ортогональная дизъюнктивная нормальная форма (ОДНФ) и бесповторные ФАЛ (БФАЛ) в базисе «конъюнкция-отрицание».

Если ФАЛ представлена в ФППЗ, то переход к вероятностной функции осуществляется по следующим правилам:

1. Каждая логическая переменная в ФППЗ заменяется вероятностью ее равенства единице:

, ;

2. Отрицание функции заменяется разностью между единицей и вероятностью равенства этой функции единице;

3. Операции логического умножения и сложения заменяются операциями арифметического умножения и сложения.

Составление сценария опасного состояния

Составления сценария опасного состояния ИС можно представить в виде следующей последовательности шагов:

1. выделение конечного события – опасного состояния (отказа),

2. выделение промежуточных событий, приводящих к реализации опасного состояния и получаемых как комбинация двух или более инициирующих событий,

3. выделение инициирующих событий-угроз.

Для представления опасного состояния используется дерево событий или отказов.

На рис. 5.2 представлен пример сценария опасного состояния в виде дерева событий.

Рис. 5.2. Пример дерева событий для описания опасного состояния системы


Построение функции алгебры логики

С помощью дерева событий составляется функция алгебры логики, описывающая условия перехода системы в опасное состояние.

Для описания условий перехода системы в опасное состояние используется понятие «кратчайший путь опасного функционирования » (КПОФ), под которым понимается конъюнкция минимального набора элементов системы, обеспечивающих вместе переход системы в опасное состояние:

,

где K wl – множество номеров переменных, соответствующих данному пути.

Условие перехода системы в опасное состояние можно представить в виде дизъюнкции всех имеющихся КПОФ:

.

Пример. Пусть дерево событий имеет вид, представленный на рис. 5.2.

Тогда КПОФ являются: , , , .

Условие перехода системы в опасное состояние имеет вид:

Построение вероятностной функции

На предыдущем этапе была получена ФАЛ , описывающая опасное состояние системы как дизъюнкцию всех КПОФ. Следующим шагом является преобразование ФАЛ к ФППЗ – СДНФ, ОДНФ или бесповторной ФАЛ в базисе конъюнкция-отрицание (БФАЛ).

Построение вероятностной функции на основе ФППЗ осуществляется согласно правилам, описанным выше. Результатом данного этапа является вероятностная функция

Расчет оценки вероятности реализации опасного состояния

Подставляя значения в ВФ, полученную на предыдущем этапе, получаем оценку вероятности реализации опасного состояния P ij .

Пример

Рассмотрим пример применения ЛВМ для оценки риска реализации опасного состояния «Нарушение конфиденциальности базы данных ИС (БД ИС)».

Шаг 1. Составление сценария опасного состояния ресурса (рис. 5.3).

Рис. 5.3. Сценарий ОС «Нарушение конфиденциальности БД ИС»

Шаг 2. Построение функции алгебры логики.Согласно описанному сценарию, логическая функция принимает вид:

F=X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X 12 X 13 X 14 X 15 X 12 X 13 X 14 X 15

Лекция 9

Тема: Оценка надежности методом путей и сечений. Логико-вероятностные методы анализа сложных систем

План

1. Метод минимальных путей и сечений для расчета показателей надежности систем с разветвленной структурой.

2. Основные определения и понятия логико-вероятностных методов анализа и оценка надежности ИС.

3. Сущность метода кратчайшего пути успешного функционирования и минимального сечения отказов.

4. Расчет функции работоспособности и функции отказа для мостиковой структуры.

5. Области применения этих методов. Статистическое моделирование для оценки надежности ИС.

Ключевые слова

Показатели надежности, разветвленная структура ИС, минимальных путь, сечение, логико-вероятностный метод, мостиковая схема, функция работоспособности, кратчайший путь успешного функционирования, минимальное сечение отказов, вероятность безотказной работы, функция алгебры логики, структурная схема расчета надежности.

Встречаются структуры и способы организации ИС, когда резервирование имеет место, но его нельзя представить по схеме последовательного и параллельного включения элементов или подсистем. Для анализа надежности таких структур используют метод минимальных путей и сечений, который относится к приближенным методам и позволяет определить граничные оценки надежности сверху и снизу .

Путем в сложной структуре называется последовательность элементов, обеспечивающих функционирование (работоспособность) системы.

Сечением называется совокупность элементов, отказы которых приводят к отказу системы.

Вероятность безотказной работы последовательно включенных параллельных цепей дает верхнюю оценку для ВБР системы данной структуры. Вероятность безотказной работы параллельно включенных последовательных цепей из элементов путей дает нижнию оценку для ВБР системы данной структуры. Фактическое значение показателя надежности находится между верхней и нижней границами.

Рассмотрим мостиковую схему соединения элементов системы, состоящей из пяти элементов (рис. 1).

Рис. 1. Мостиковая схема соединения элементов (подсист.)

Здесь набор элементов образует минимальный путь, если исключение любого элемента из набора приводит к отказу пути. Из этого вытекает, что в переделах одного пути элементы находятся в основном соединении, а сами пути включаются параллельно. Набор минимальных путей для мостиковой схемы представлен на рис. 2. Пути образуют элемента 1, 3; 2, 4; 1, 5, 4; 2, 5, 3.


Рис. 2. Набор минимальных путей.

Для всех элементов схемы известны ВБР Р 1 , Р 2 , Р 3 , Р 4 , Р 5 и соответствующие им вероятности отказа типа «обрыв» Q 1 ÷ Q 5 , необходимо определить вероятность наличие цепи между точками а и в . Поскольку один и тот же элемент включается в два параллельных пути, то в результате расчета получается оценка безотказности сверху.

Р в = 1- Q 13 Q 24 Q 154 Q 253 = 1- (1 1 Р 3)(1 2 Р 4)(1 1 Р 5 Р 4)(1 2 Р 5 Р 3)

При определении минимальных сечений осуществляется подбор минимального числа элементов, перевод которых из работоспособного состояния в неработоспособное вызывает отказ системы.

При правильном подборе элементов сечения возвращение любого из элементов в работоспособное состояние восстанавливает работоспособное состояние системы.

Поскольку отказ каждого из сечений вызывает отказ системы, то первые соединяются последовательно. В переделах каждого сечения элементы соединяются параллельно, так как для работы системы достаточно наличия работоспособного состояния любого из элементов сечения.

Схема минимальных сечений для мостиковой схемы приведена на рис. 3. Так как один и тот же элемент включается в два сечения, то полученная оценка является оценкой снизу.

P н = P 12 P 34 P 154 P 253 = (1- q 1 q 2 )(1- q 3 q 4 )(1- q 1 q 5 q 4 )(1- q 2 q 5 q 3 )


Рис. 3. Набор минимальных сечений

Вероятность безотказной работы системы Р с оценивается тогда по двойному неравенству

Р н ≤Р с ≤Р в

Таким образом, данный метод позволяет представить систему с произвольной структурой в виде параллельных и последовательных цепей. (При составлении минимальных путей и сечений любая система преобразуется в структуру с параллельно-последовательным или последовательно-параллельным соединением элементов). Метод прост, но требует точного определения всех путей и сечений. Он получил широкое применение при расчете надежности подсистем АСУТП, особенно применительно к системам защиты и логического управления. Его используют в системах регулирования мощности реактора, предусматривающая возможность перехода от одной неисправной цепи регулирования к другой, находящийся в резервном состоянии.

Логико-вероятностные методы анализа надежности систем

Сущность логико-вероятностных методов заключается в использовании функций алгебры логики (ФАЛ) для аналитической записи условий работоспособности системы и переходе от ФАЛ к вероятностным функциям (ВФ), объективно выражающим безотказность системы. Т.е. с помощью логико-вероятностного метода можно описать схемы ИС для расчета надежности с помощью аппарата математической логики с последующим использованием теории вероятностей при определении показателей надежности .

Система может находится только в двух состояниях: в состоянии полной работоспособности (у = 1) и в состоянии полного отказа (у = 0). При этом предполагается, что действие системы детерминировано зависит от действия ее элементов, т.е. у является функцией х 1 , х 2 , … , x i , … , x n . Элементы могут находиться также только в двух несовместных состояниях: полной работоспособности (x i = 1) и полного отказа (x i = 0).

Функцию алгебры логики, связывающую состояние элементов с состоянием системы у (х 1 , х 2 ,…, x n ) называют функцией работоспособности системы F (y ) = 1.

Для оценки работоспособных состояний системы используют два понятия:

1) кратчайшего пути успешного функционирования (КПУФ), который представляет собой такую конъюнкцию её элементов, ни одну из компонент которой нельзя изъять, не нарушив функционирования системы. Такая конъюнкция записывается в виде следующей ФАЛ:

где i – принадлежит множеству номеров , соответствующих данному
l -му пути.

Другими словами, КПУФ системы описывает одно из её возможных работоспособных состояний, которое определяется минимальным набором работоспособных элементов, абсолютно необходимых для выполнения заданных для системы функций.

2) минимального сечения отказов системы (МСО) представляющего собой такую конъюнкцию из отрицаний её элементов, ни одну из компонент которой нельзя изъять, не нарушив условия неработоспособности системы. Такую конъюнкцию можно записать в виде следующей ФАЛ:

где означает множество номеров, соответствующих данному сечению.

Другими словами, МСО системы описывает один из возможных способов нарушения работоспособности системы с помощью минимального набора отказавших элементов.

Каждая избыточная система имеет конечное число кратчайших путей (l = 1, 2,…, m ) и минимальных сечений (j = 1, 2,…, m ).

Используя эти понятия можно записать условия работоспособности системы.

1) в виде дизъюнкции всех имеющихся кратчайших путей успешного функционирования.

;

2) в виде конъюнкции отрицаний всех МСО

;

Таким образом, условия работоспособности реальной системы можно представить в виде условий работоспособности некоторой эквивалентной (в смысле надежности) системы, структура которой представляет параллельное соединение кратчайших путей успешного функционирования, или другой эквивалентной системы структура которой представляет соединение отрицаний минимальных сечений.

Например, для мостиковой структуры ИС функция работоспособности системы с помощью КПУФ запишется следующим образом:

;

функцию работоспособности этой же системы через МСО можно записать в следующем виде:

При небольшом числе элементов (не более 20) может быть использован табличный метод расчета надежности, который основан на использовании теоремы сложения вероятностей совместных событий.

Вероятность безотказной работы системы можно вычислить по формуле (через вероятностную функцию вида):

Логико-вероятностные методы (методы: разрезания, табличный, ортогонализации) широко применяют в диагностических процедурах при построении деревьев отказов и определении базисных (исходных) событий, вызывающих отказ системы.

Для надежности компьютерной системы со сложной структурой резервирования может быть использован метод статистического моделирования.

Идея метода заключается в генерировании логических переменных x i c заданной вероятностью pi возникновения единицы, которые подставляются в логическую структурную функцию моделируемой системы в произвольной форме и затем вычисляется результат.

Совокупность х 1 , х 2 ,…, х n независимых случайных событий, образующих полную группу, характеризуется вероятностями появления каждого из событий p (x i ), причем .

Для моделирования этой совокупности случайных событий используется генератор случайных чисел, равномерно распределенных в интервале

Значение p i выбирается равным вероятности безотказной работы i -й подсистемы. При этом процесс вычисления повторяется N 0 раз с новыми, независимыми случайными значениями аргументов x i (при этом подсчитывается количество N (t ) единичных значений логический структурной функции). Отношение N (t )/ N 0 является статистической оценкой вероятности безотказной работы

где N (t ) – количество безотказно работающих до момента времени t объектов, при их исходном количестве.

Генерирование случайных логических переменных x i с заданной вероятностью появления единицы р i осуществляется на основании равномерно распределенных в интервале случайных величин, получаемых с помощью стандартных программ, входящих в математическое обеспечение всех современных компьютеров.

Контрольные вопросы и задания

1. Назовите метод оценки надежности ИС, где вероятность безотказной работы системы определяется как Р н ≤Р с ≤Р в .

2. Для расчета надежности каких систем используется метод путей и сечений?

3. С помощью какого метода можно оценить надежность устройств мостикового типа?

4. Какие методы определения показателей надежности восстанавливаемых систем известны?

5. Структурно представьте мостиковую схему набором минимальных путей и сечений.

6. Дайте определение минимального пути и минимального сечения.

7. Запишите функцию работоспособности для устройства с разветвленной структурой?

8. Что называется функцией работоспособности?

9. Что такое кратчайший путь успешного функционирования (КПУФ). Запишите условия работоспособности в виде КПУФ.

10. Где используется логико-вероятностный метод оценки надежности?

Литература: 1, 2, 3, 5, 6, 8.

Сущность логико-вероятностных методов заключается в использовании функций алгебры логики (ФАЛ) для аналитической записи условий работоспособности системы и переходе от ФАЛ к вероятностным функциям (ВФ), объективно выражающим безотказность системы. Т.е. с помощью логико-вероятностного метода можно описать схемы ИС для расчета надежности с помощью аппарата математической логики с последующим использованием теории вероятностей при определении показателей надежности .

Система может находится только в двух состояниях: в состоянии полной работоспособности (у = 1) и в состоянии полного отказа (у = 0). При этом предполагается, что действие системы детерминировано зависит от действия ее элементов, т.е. у является функцией х 1 , х 2 , … , x i , … , x n . Элементы могут находиться также только в двух несовместных состояниях: полной работоспособности (x i = 1) и полного отказа (x i = 0).

Функцию алгебры логики, связывающую состояние элементов с состоянием системы у (х 1 , х 2 ,…, x n ) называют функцией работоспособности системы F (y )= 1.

Для оценки работоспособных состояний системы используют два понятия:

1) кратчайшего пути успешного функционирования (КПУФ), который представляет собой такую конъюнкцию её элементов, ни одну из компонент которой нельзя изъять, не нарушив функционирования системы. Такая конъюнкция записывается в виде следующей ФАЛ:

где i – принадлежит множеству номеров , соответствующих данному
l -му пути.

Другими словами, КПУФ системы описывает одно из её возможных работоспособных состояний, которое определяется минимальным набором работоспособных элементов, абсолютно необходимых для выполнения заданных для системы функций.

2) минимального сечения отказов системы (МСО) представляющего собой такую конъюнкцию из отрицаний её элементов, ни одну из компонент которой нельзя изъять, не нарушив условия неработоспособности системы. Такую конъюнкцию можно записать в виде следующей ФАЛ:

где означает множество номеров, соответствующих данному сечению.

Другими словами, МСО системы описывает один из возможных способов нарушения работоспособности системы с помощью минимального набора отказавших элементов.

Каждая избыточная система имеет конечное число кратчайших путей (l = 1, 2,…, m ) и минимальных сечений (j = 1, 2,…, m ).

Используя эти понятия можно записать условия работоспособности системы.

1) в виде дизъюнкции всех имеющихся кратчайших путей успешного функционирования.

;

2) в виде конъюнкции отрицаний всех МСО

;

Таким образом, условия работоспособности реальной системы можно представить в виде условий работоспособности некоторой эквивалентной (в смысле надежности) системы, структура которой представляет параллельное соединение кратчайших путей успешного функционирования, или другой эквивалентной системы структура которой представляет соединение отрицаний минимальных сечений.

Например, для мостиковой структуры ИС функция работоспособности системы с помощью КПУФ запишется следующим образом:

;

функцию работоспособности этой же системы через МСО можно записать в следующем виде:

При небольшом числе элементов (не более 20) может быть использован табличный метод расчета надежности, который основан на использовании теоремы сложения вероятностей совместных событий.

Вероятность безотказной работы системы можно вычислить по формуле (через вероятностную функцию вида):

Логико-вероятностные методы (методы: разрезания, табличный, ортогонализации) широко применяют в диагностических процедурах при построении деревьев отказов и определении базисных (исходных) событий, вызывающих отказ системы.

Для надежности компьютерной системы со сложной структурой резервирования может быть использован метод статистического моделирования.

Идея метода заключается в генерировании логических переменных x i c заданной вероятностью pi возникновения единицы, которые подставляются в логическую структурную функцию моделируемой системы в произвольной форме и затем вычисляется результат.

Совокупность х 1 , х 2 ,…, х n независимых случайных событий, образующих полную группу, характеризуется вероятностями появления каждого из событий p (x i ), причем .

Для моделирования этой совокупности случайных событий используется генератор случайных чисел, равномерно распределенных в интервале

Значение p i выбирается равным вероятности безотказной работы i -й подсистемы. При этом процесс вычисления повторяется N 0 раз с новыми, независимыми случайными значениями аргументов x i (при этом подсчитывается количество N (t ) единичных значений логический структурной функции). Отношение N (t )/N 0 является статистической оценкой вероятности безотказной работы

где N (t ) – количество безотказно работающих до момента времени t объектов, при их исходном количестве.

Генерирование случайных логических переменных x i с заданной вероятностью появления единицы р i осуществляется на основании равномерно распределенных в интервале случайных величин, получаемых с помощью стандартных программ, входящих в математическое обеспечение всех современных компьютеров.

1. Назовите метод оценки надежности ИС, где вероятность безотказной работы системы определяется как Р н ≤Р с ≤Р в .

2. Для расчета надежности каких систем используется метод путей и сечений?

3. С помощью какого метода можно оценить надежность устройств мостикового типа?

4. Какие методы определения показателей надежности восстанавливаемых систем известны?

5. Структурно представьте мостиковую схему набором минимальных путей и сечений.

6. Дайте определение минимального пути и минимального сечения.

7. Запишите функцию работоспособности для устройства с разветвленной структурой?

8. Что называется функцией работоспособности?

9. Что такое кратчайший путь успешного функционирования (КПУФ). Запишите условия работоспособности в виде КПУФ.

10. Где используется логико-вероятностный метод оценки надежности?

Литература: 1, 2, 3, 5, 6, 8.


Тема: Расчет надежности восстанавливаемых систем (метод дифференциальных уравнений)

1. Общие методы расчета надежности восстанавливаемых систем.

2. Построение графа возможных состояний системы для оценки надежности восстанавливаемых систем.

3. Метод систем дифференциальных уравнений (СДУ), правило Колмогорова для составления СДУ

4. Нормировочные и начальные условия для решения СДУ.

Ключевые слова

Восстанавливаемая система, количественные характеристики надежности, граф состояний, работоспособное состояние, система дифференциальных уравнений, правило Колмогорова, вероятность безотказной работы, интенсивность восстановления, интенсивность отказа нормировочные условия, начальные условия, параметры надежности, нерезервированная система.

Основной задачей расчета надежности проектируемых ИС является построение математических моделей адекватных вероятностным процессам их функционирования. Эти модели позволяют оценить степень удовлетворения требований по надежности к проектируемым или эксплуатируемым системам.

Вид математической модели определяет возможность получения расчетных формул. Для проведения расчета надежности восстанавливаемых резервированных и нерезервированных систем используются: метод интегральных уравнений, метод дифференциальных уравнений, метод переходных интенсивностей, метод оценки надежности по графу возможных состояний и др. .

Метод интегральных уравнений . Метод интегральных уравнений является наиболее общим, его можно применять при расчете надежности любых (восстанавливаемых и невосстанавливаемых) систем при любых распределениях ВБР и времени восстановления.

В этом случае для определения показателей надежности системы составляют и решают интегральные и интегро-дифференциальные уравнения, связывающие характеристики распределения ВБР, а для восстанавливаемых систем – и время восстановления элементов.

В ходе составления интегральных уравнений обычно выделяют один или несколько бесконечно малых интервалов времени, для которых рассматривают сложные события, проявляющие при совместном действии нескольких факторов.

В общем случае решения находят численными методами с помощью компьютера. Метод интегральных уравнений не получил широкого распространения из-за трудности решения .

Метод дифференциальных уравнений . Метод применяется для оценки надежности восстанавливаемых объектов и основан на допущении о показательных распределениях времени между отказами (наработки) и времени восстановления. При этом параметр потока отказов w = λ = 1/t cp . и интенсивность восстановления µ = 1/t в , где t cp . – среднее время безотказной работы, t в – среднее время восстановления.

Для применения метода необходимо иметь математическую модель для множества возможных состояний системы S = {S 1 , S 2 ,…, S n }, в которых она может находиться при отказах и восстановлениях системы. Время от времени система S скачком переходит из одного состояния в другое под действием отказов и восстановлений ее отдельных элементов.

При анализе поведения системы во времени в процессе износа удобно пользоваться графом состояний. Граф состояний – это направленный граф, где кружками или прямоугольниками изображают возможные состояния системы. Он содержит столько вершин, сколько различных состояний возможно у объекта или системы. Ребра графа отражают возможные переходы из некоторого состояния во все остальные с параметрами интенсивностей отказов и восстановлений (около стрелок показаны интенсивности переходов).

Каждой комбинации отказовых и работоспособных состояний подсистем соответствует одно состояние системы. Число состояний системы n = 2 k , где k – количество подсистем (элементов).

Связь между вероятностями нахождения системы во всех его возможных состояниях выражается системой дифференциальных уравнений Колмогорова (уравнений первого порядка).

Структура уравнений Колмогорова построена по следующим правилам: в левой части каждого уравнения записывается производная вероятности нахождения объекта в рассматриваемом состоянии (вершине графа), а правая часть содержит столько членов, сколько ребер графа состояний связано с этой вершиной. Если ребро направлено из данной вершины, соответствующий член имеет знак минус, если в данную вершину – знак плюс. Каждый член равен произведению параметра интенсивности отказа (восстановления), связанного с данным ребром, на вероятность нахождения в той вершине графа, из которой исходит ребро.

Система уравнений Колмогорова включает столько уравнений, сколько вершин в графе состояний объекта.

Система дифференциальных уравнений дополняется нормировочным условием:

где P j (t j -м состоянии;

n – число возможных состояний системы.

Решение системы уравнений при конкретных условиях дает значение искомых вероятностей P j (t ).

Все множество возможных состояний системы разбивается на две части: подмножество состояний n 1 , в которых система работоспособна, и подмножество состояний n 2 , в которых система неработоспособна.

Функция готовности системы:

К г ,

где P j (t ) – вероятность нахождения системы в j работоспособном состоянии;

n 1 – число состояний в которых система работоспособна.

Когда необходимо вычислить коэффициент готовности системы или коэффициент простоя (перерывы в работе системы допустимы), рассматривают установившийся режим эксплуатации при t→∞ . При этом все производные и система дифференциальных уравнений переходят в систему алгебраических уравнений, которые легко решаются.

Пример графа состояний нерезервированной восстанавливаемой системы с n – элементами приведен на рис. 1.

Рис. 1. Граф состояний восстанавливаемой системы (штриховкой отмечены неработоспособные состояния)

Рассмотрим возможные состояния в которых может находиться система. Здесь возможны следующие состояния:

S 0 – все элементы работоспособны;

S 1 – первый элемент неработоспособен остальные работоспособны;

S 2 – второй элемент неработоспособен остальные работоспособны;

S n n -й элемент неработоспособен остальные работоспособны.

Вероятность одновременного появления двух неработоспособных элементов пренебрежимо мала. Символами λ 1 , λ 2 ,…, λ n обозначены интенсивности отказов, µ 1 , µ 2 ,…, µ n интенсивности восстановления соответствующих элементов;

По графу состояний (рис. 1) составляют систему дифференциальных уравнений (уравнение для состояния S 0 опускаем из-за громоздкости):

С нормировочным условием: .

Начальные условия:

При установившемся режиме эксплуатации (при t →∞) имеем:

Решив полученную систему алгебраических уравнений с учетом нормировочного условия, находим показатели надежности.

При решении системы уравнений можно использовать преобразование Лапласа для вероятностей состояний или численные методы.

Контрольные вопросы и задания

1. Какие методы определения показателей надежности восстанавливаемых систем известны?

2. Как определяются состояния элементов и устройств ИС?

3. Как определить области работоспособных состояний системы?

4. Почему метод дифференциальных уравнений получил широкое распространение при оценке надежности восстанавливаемых систем?

5. Что является необходимым условием при решении систем дифференциальных уравнений?

6. Как составляется дифференциальные уравнения для определения параметров надежности ИС?

7. Каким условием должно быть дополнено система дифференциальных уравнений (СДУ) для более эффективного решения.

8. Запишите условия работоспособности системы, состоящий из трех элементов.

9. Чему равно число состояний устройства состоящего из четырех элементов?

10. Какое правило используется при составлении СДУ?

Литература: 1, 2, 3, 5, 6, 8.


Тема: Марковские модели для оценки надежности резервированных восстанавливаемых информационных систем

1. Понятие Марковского свойства, определение состояния системы.

2. Методика и алгоритм построения Марковской модели.

3. Расчетные формулы для расчета показатели надежности ТС

4. Матрица интенсивностей переходов для оценки показателей надежности резервированных восстанавливаемых ИС.

Ключевые слова

Марковская модель, состояние системы, работоспособность, матрица интенсивностей переходов, граф состояний, восстанавливаемая система, резервирование, последовательная схема, постоянный резерв, система дифференциальных уравнений, правило Колмогорова, схема расчета надежности, приближенный метод, алгоритмы построения СДУ, нормировочные условия, начальные условия, вероятность безотказной работы, интенсивность отказа.

Функционирование ИС и их составных частей можно представить как совокупность процессов перехода из одного состояния в другое под воздействием каких либо причин.

С точки зрения надежности восстанавливаемых ИС их состояние в каждый момент времени характеризуется тем, какие из элементов работоспособны, а какие восстанавливаются.

Если каждому возможному множеству работоспособных (неработоспособных) элементов поставить в соответствие множество состояний объекта, то отказы и восстановления элементов будут отображаться переходом объекта из одного состояния в другое:

Пусть, к примеру, объект состоит из двух элементов. Тогда он может находиться в одном из четырех состояний: n = 2 k = 2 2 = 4.

S 1 – оба элемента работоспособны;

S 2 – неработоспособен только первый элемент;

S 3 – неработоспособен только второй элемент;

S 4 – неработоспособны оба элемента.

Множество возможных состояний объекта: S = {S 1 , S 2 , S 3 , S 4 }.

Полное множество состояний исследуемой системы может быть дискретным, либо непрерывным (непрерывно заполнять один или несколько интервалов числовой оси).

В дальнейшем будем рассматривать системы с дискретным пространством состояний. Последовательность состояний такой системы и сам процесс переходов из одного состояния в другое называется цепью.

В зависимости от времени пребывания системы в каждом состоянии различают процессы с непрерывным временем и процессы с дискретным временем. В процессах с непрерывным временем переход системы из одного состояния в другое осуществляется в любой момент времени. Во втором случае время пребывания системы в каждом состоянии – фиксировано так, что моменты переходов размещаются на временной оси через равные промежутки.

В настоящее время наиболее изучены цепи, обладающие марковским свойством. Вероятности переходов обозначаются символами P ij (t ), а процесс P ij переходов называется Марковской цепью или цепью Маркова.

Марковское свойство связанно с отсутствием последействия. Это означает, что поведение системы в будущем зависит только от ее состояния в данный момент времени, и не зависит от того каким образом она пришла в это состояние.

Марковские процессы позволяют описать последовательности отказов-восстановлений в системах, описываемых при помощи графа состояний.

Наиболее часто для расчета надежности применяется метод марковских цепей с непрерывным временем, основанный на системе дифференциальных уравнений, которая в матричной форме может быть записана как:

,

где P (t ) = P 0 – начальные условия;

,

а Λ – матрица интенсивности переходов (матрица коэффициента при вероятностях состояний):

где λ ij – интенсивности перехода системы из i-го состояния в j-е;

P j – вероятность того, что система находится в j-м состоянии.

При оценке надежности сложных резервированных и восстанавливаемых систем метод марковских цепей приводит к сложным решениям из-за большого числа состояний. В случае однотипных подсистем работающих в одинаковых условиях, для уменьшения числа состояний используют метод укрупнения. Состояния с одинаковым количеством подсистем объединяются. Тогда размерность уравнений уменьшается .

Последовательность методики оценки надежности резервированных восстанавливаемых систем с использованием метода марковских цепей следующая:

1. Анализируется состав устройства и составляется структурная схема надежности. По схеме строится граф, в котором учитывается все возможные состояния;

2. Все вершины графа в результате анализа структурной схемы разделяются на два подмножества: вершины соответствующие работоспособному состоянию системы и вершины соответствующие неработоспособному состоянию системы.

3. С помощью графа состояний составляется система дифференциальных уравнений (используется правило Колмогорова);

4. Выбираются начальные условия решения задачи;

5. Определяются вероятности нахождения системы в работоспособном состоянии в произвольный момент времени;

6. Определяется вероятность безотказной работы системы;

7. В случае необходимости определяются и другие показатели.

Контрольные вопросы и задания

1. Что подразумевается под цепью Маркова?

2. Приведите алгоритм оценки надежности ИС с использованием Марковских моделей.

3. Как составляется дифференциальные уравнения для определения параметров надежности ИС?

4. Значение каких показателей надежности можно получить используя Марковский метод?

5. Перечислите основные этапы построения Марковской модели надежности сложной системы.

6. Что является необходимым условием при решении систем дифференциальных уравнений?

7. Как определяются состояния элементов и устройств КС?

8. Дайте определение понятию восстанавливаемых систем.

9. Что такое Марковская цепь?

10. Для оценки каких систем используют Марковские модели надежности?

Литература: 1, 2, 3, 10, 11.


Тема: Приближенные методы расчета надежности технических средств ИС

1. Основные допущение и ограничения при оценки надежности последовательно-параллельных структур.

2. Приближенные методы расчета надежности восстанавливаемых ИС, при последовательном и параллельном включении подсистем ИС.

3. Структурные схемы расчета надежности ИС.

Ключевые слова

Надежность, последовательно-параллельная структура, приближенные методы расчета надежности, структурное схема расчета надежности, интенсивность отказа, интенсивность восстановления, коэффициент готовности, время восстановления, компьютерная система.



Что еще почитать