Краткая характеристика радиационных аварий. Поражающие факторы радиационных аварий

Тема: Поражающие
факторы ядерного
взрыва и
радиационных аварий
д.м.н. Полозова Елена Валентиновна

Охарактеризуйте РОО
(радиационно опасный
объект)?
Приведите примеры РОО.

Радиационно-опасные объекты (РОО)

Это ядерные энергетические установки и
другие объекты экономики, при авариях и
разрушениях которых могут произойти
массовые радиационные поражения людей
или радиоактивное загрязнение территории.

К радиационно опасным объектам относятся:
Атомные станции (АЭС, АТЭЦ, АСТ, АСПТ).
Предприятия по изготовлению, переработке, захоронению ядерного
топлива.
Научно-исследовательские и проектные организации, имеющие ядерные
реакторы.
Ядерные энергетические установки на транспорте.
Ядерное оружие.

Что такое радиационная
авария?
Фазы развития радиационных
аварий?
Виды радиационных аварий?

Радиационная авария

это внезапная потеря контроля над источниками
излучения, вызванная неисправностью
оборудования, неправильными действиями
персонала, стихийными бедствиями или иными
причинами, что может привести или привело к
облучению людей выше установленных норма
или радиоактивному загрязнению внешней
среды.

Фазы развития радиационных аварий:
Ранняя фаза – от нескольких часов до суток.
Возможно облучение населения за пределами
РОО. Данные получают от контрольноизмерительных приборов на аварийном объекте.
Промежуточная фаза – окончание выпадения
радиоактивных осадков и проведение
первоочередных мероприятий.
Продолжительность – сутки – до года.
Осуществляются поэтапно меры защиты
населения.
Данные измерений индивидуальных доз, данные
радиационной разведки.
Поздняя фаза – до прекращения защитных
мероприятий, отмена всех ограничительных
мероприятий.

Виды радиационных аварий

1. Локальная, приводит к выходу радиоактивных продуктов в
границах объекта или только к облучению персонала.
2. Местная, приводит к повышенному выходу радиоактивных
продуктов но в пределах санитарно-защитной зоны (СЗЗ). При
этом также возможно облучение персонала в дозах,
превышающих допустимые.
3. Общая, приводит к выходу радиоактивных продуктов за
границу санитарно-защитной зоны (СЗЗ) в количествах,
превышающих регламентированные значения для нормальной
эксплуатации. При данном типе аварий возможно
переоблучение населения и загрязнение окружающей среды.

1. Ядерное оружие

Что называется ядерным
оружием?
Какие существуют типы и
виды ядерного оружия:
- по виду используемой
энергии
- по мощности?

Ядерное оружие

это боеприпас, действие
которого основано
на ядерных реакциях,
протекающих с выделением большого
количества
энергии,
ионизирующего,
светового излучения, электромагнитного
импульса, формированием ударной волны и
радиоактивного заражения местности.

Ядерное оружие рассматривается как главное средство массового поражения

Возможно применение ядерных боеприпасов
при локальных конфликтах и с
террористическими целями.
Ядерные удары будут направлены по
промышленным, политико-административным,
транспортным центрам и военным объектам, а
также для поражения населения мегаполисов.

По виду используемой энергии:
а) атомные (деление тяжёлых ядер);
б) термоядерные (слияние ядер лёгких элементов с
образованием более тяжёлых ядер);
в) комбинированные (трёхэтапное протекание
атомных и термоядерных реакций в одном боеприпасе);
г) нейтронные (образование высокоэнергетических
нейтронов в термоядерных боеприпасах малой и
сверхмалой мощности; основная часть заряда – тритий
и дейтерий).

Классификация ядерных боеприпасов

По мощности делят на пять калибров:
- сверхмалый - до 1 тыс. т (менее 1кТ);
- малый - от 1 до 10 тыс. т (от 1 до 10 кТ);
- средний - от 10 до 100 тыс. т (от 10 до 100 кТ);
- крупный - от 100 тыс. т до 1 млн т (от 100 кТ до 1 МТ);
- сверхкрупный - более 1 млн т (свыше 1 МТ).
Энергию ядерного взрыва (мощность боеприпаса) принято измерять
величиной тротилового эквивалента.
Тротиловый эквивалент - это масса тротила
(тринитротолуола), которая обеспечила бы взрыв, по
мощности эквивалентный взрыву данного ядерного
боеприпаса. Обычно он измеряется в килотоннах (кТ)
или в мегатоннах (МТ).
Например, каждый килограмм прореагировавшего плутония при
ядерном взрыве выделяет энергию, соответствующую энергии
взрыва 20 млн. килограмм тротила.

Виды ядерных взрывов

Высотный взрыв
производится выше границы
тропосферы (от 6 до 18 км).
Воздушный взрыв
производится на высотах, при
которых светящаяся область не
касается поверхности земли
или воды и имеет форму шара.
Наземный взрыв
осуществляется на
поверхности земли или на
такой высоте в воздухе, при
которой светящаяся область
касается этой поверхности.

Виды ядерных взрывов

Подземный взрыв
производится на
определенной
глубине
от поверхности
земли
и может быть с
выбросом или
без выброса
грунта наружу.
Семипалатинский полигон.
GOOCL. Места подземных испытаний

Виды ядерных взрывов

Надводный взрыв (взрыв на
водной преграде)
осуществляется на поверхности
воды. При данном взрыве
происходит образование паров,
которые вовлекаются в облако
взрыва и образуют паровой
султан, из которого выпадает
радиоактивный дождь.
Подводный взрыв производится
в воде на различных глубинах,
характеризуется образованием
взрывного султана и базисной
волны, подводной ударной
волны.

2. Поражающие
факторы
ядерного взрыва?

Распределение энергии взрыва ядерного боеприпаса

Поражающий фактор
Доля от полной
энергии взрыва, %
Ударная волна
50-55
Световое излучение
30-35
Ионизирующие излучения:
проникающая радиация взрыва
радиоактивное заражение местности
5-10
10-15
Электромагнитный импульс
2-5

Ударная волна

является основным поражающим фактором, время ее
действия колеблется от десятых долей секунды до
нескольких секунд. Ударная волна представляет
собой область резко сжатого и нагретого воздуха,
распространяющегося во все стороны от центра
взрыва. Вблизи центра взрыва скорость
распространения волны в несколько раз превышает
скорость звука, а с увеличением расстояния от
центра она быстро снижается.

Причина поражающего действия ударной волны - сильное (избыточное) давление, образующееся в центре взрыва (миллиарды атмосфер). Избыточное д

Причина поражающего действия ударной
волны - сильное (избыточное) давление,
образующееся в центре взрыва (миллиарды
атмосфер).
Избыточное давление - это разность между
максимальным давлением во фронте ударной
волны и нормальным атмосферным
давлением перед ним.

Световое излучение

представляет собой поток лучистой энергии,
включающий ультрафиолетовое, видимое и
инфракрасное излучение. Источником светового
излучения является светящаяся область взрыва.
Величина светового импульса прямо
пропорциональна мощности взрыва и обратно
пропорциональна квадрату расстояния от центра
взрыва. Длительность светового излучения зависит
от калибра боеприпаса и колеблется от 1 до 30 с.

Проникающая радиация

это источники ионизирующих излучений различной природы:
1. мгновенные ионизирующие излучения,
возникающие при цепных ядерных реакциях в
момент взрыва;
2. запаздывающие (осколочные) ионизирующие
излучения – радиоактивный распад осколков
(продуктов) деления в облаке взрыва;
3. вторичные ионизирующие излучения,
возникающие при взаимодействии нейтронов с
ядрами элементов воздуха и почвы.
Проникающая радиация практически состоит только из потока
нейтронов и гамма квантов.
Радиус действия проникающей радиации 1-3 км, а длительность
воздействия до 10-15 с.

Радиоактивное загрязнение местности

Возникает в результате выпадения РВ на
поверхность земли из радиоактивного
облака вместе с осадками.
Степень заражения местности и различных
объектов характеризуется количеством РВ,
приходящихся на единицу поверхности
(плотность заражения).
Уровень радиации на местности и степень
зараженности поверхности различных
объектов РВ определяется по показаниям
дозиметрических приборов.

Источниками радиоактивного загрязнения местности (РЗМ) являются:

Продукты деления ядерного горючего (урана,
плутония). В этом случае имеют место g- и bизлучения;
Не разделившаяся часть горючего при ядерном
взрыве, так как в реакции деления взрывного
характера принимает участие примерно 20 %
горючего. Оставшаяся часть горючего
загрязняет территорию и является источником
a-излучений;
Наведенная активность в почве. Под
воздействием нейтронного потока в грунте
образуется ряд радиоактивных изотопов:
алюминий-28, натрий-24, магний-24, которые
при своем распаде выделяют g- и b-излучения.

Электромагнитный импульс

возникает в результате ионизации воздуха и
появления мощных электромагнитных полей,
которые в электрических цепях (антеннах,
кабелях, линиях электропередачи и т. п.) создают
импульс наведенного тока, что вызывает
повреждение электронных средств коммуникацуии, управления, наблюдения и проч.

Доза излучения (Д) – это часть энергии, переданная излучением веществу и поглощенная им

Доза излучения – это количественная
характеристика воздействия
ионизирующего излучения на
вещество.
Это основной параметр,
характеризующий поражающее
действие проникающей радиации.
Применяются три основных вида дозы:
- экспозиционная
- поглощенная
- эквивалентная

Поглощенная доза

-
Это количество энергии излучения,
поглощенное единицей массы
облучаемого тела (тканями
биологического тела).
Поглощенная доза характеризует
воздействие ионизирующих
излучений на биологические ткани.
Единица поглощенной дозы:
в системе СИ - грей (Гр)
внесистемная единица - рад
1 Гр = 100 рад

Экспозиционная доза

Экспозиционная доза - это доза
излучения в воздухе, она
характеризует потенциальную
опасность воздействия
ионизирующего излучения при
общем и равномерном облучении
тела человека.
Внесистемной единицей
измерения экспозиционной дозы
является
рентген (Р).

Эквивалентная доза

-
Показывает во сколько раз
биологическое действие данного
вида излучения эффективнее
рентгеновского излучения при
одинаковой поглощенной дозе.
Используется для оценки
биологического действия
ионизирующих излучений.
Единица эквивалентной дозы:
в системе СИ - зиверт (Зв)
внесистемная единица - Бэр.

Относительная биологическая эффективность (ОБЭ) ионизирующих излучений для клеток

Мощность дозы

Доза, отнесенная к единице
времени, называется
мощностью дозы
Экспозиционная доза, отнесенная
к единице времени, называется
мощностью экспозиционной
дозы (Р/ч, мР/ч, мкР/ч).

От каких факторов зависит
степень радиоактивного
заражения местности после
ядерного взрыва?

Масштабы и степень радиоактивного заражения зависят от: - мощности и вида ядерного взрыва; - времени, прошедшего с момента взрыва; - метео

Масштабы и степень радиоактивного
заражения зависят от:
- мощности и вида ядерного взрыва;
- времени, прошедшего с момента
взрыва;
- метеоусловий (скорости ветра)
Основные количественные
характеристики
радиоактивного заражения:
- доза излучения;
- уровень радиации или мощность дозы;
- степень заражения.

Уровень
радиации
является основной
величиной
характеризующей
степень опасности
радиоактивного
заражения.

Что является критерием для
разделения следа облака
ядерного взрыва на зоны
радиоактивного заражения?

Эпицентр взрыва (аварии) – точка
поверхности, где произошел взрыв
(авария).
Очаг применения ядерного оружия
(радиационной аварии) – территория,
на которой находится население,
здания, техника, подвергшиеся
воздействию поражающих факторов.
В результате движения облака
радиоактивных веществ под
воздействием ветра формируется
зона (след) радиоактивного
загрязнения.

Зоны РЗМ

В результате движения облака ядерного взрыва под
воздействием ветра формируется след ядерного
взрыва.
На следе ядерного взрыва по степени заражения
местности и возможным последствиям внешнего
облучения принято выделять зоны РЗМ:
зоны умеренного заражения (зона А)
сильного заражения (зона Б)
опасного заражения (зона В)
чрезвычайно опасного заражения (зона Г)

Зоны РЗМ

Как изменяется активность
продуктов ядерного взрыва
при увеличении времени после
взрыва в 7 раз?

«Правило семерок»

Радиоактивность продуктов ядерного
взрыва (ПЯВ) быстро снижается во
времени.
Например, если принять радиоактивность
ПЯВ через 1 ч после взрыва за 100%, то
через 7 ч она будет составлять 10%, а
через 49 ч - 1% (увеличение времени в 7
раз сопровождается снижением
мощности излучения ПЯВ в 10 раз).

С чем связана более высокая
опасность продуктов выбросов
при авариях на РОО по
сравнению с продуктами
ядерного взрыва?

3. Поражающие факторы радиационных аварий

Сравнительная характеристика факторов, обуславливающих медико-тактическую характеристику радиационных очагов

Факторы
Ядерное оружие
Авария на АЭС
Взрыв
Ядерный взрыв
критической массы
Тепловой взрыв
Характеристика РВ
Короткоживущие
Долгоживущие
Наличие радиоактивных
благородных газов, изотопов
йода
Нет
Есть
Продолжительность выброса
РВ
Мгновенный выброс
Часы-сутки
Форма очага радиационного
загрязнения
Правильная
эллипсовидная по
направлению ветра
Неправильная
Наличие мелкодисперсных
частиц с высокой адгезивной
способностью
Нет
Есть

Зонирование радиоактивного
заражения местности при
радиационных авариях?

При аварии, разрушении АЭС, ядерных реакторов формируется след радиоактивного загрязнения, состоящий из 5 зон, в зависимости от мощности до

При аварии, разрушении АЭС, ядерных
реакторов формируется след радиоактивного
загрязнения, состоящий из 5 зон, в
зависимости от мощности дозы излучения и
дозы,
за год опасности – возможно
М полученной
- зона радиационной
пребывание населения при соблюдении мер
радиационной защиты;
А - зона умеренного загрязнения;
Б - зона сильного загрязнения;
В - зона опасного загрязнения;
Г - зона чрезвычайно опасного загрязнения.
Зоны А, Б, В, Г – необходима эвакуация.

Какие виды радиационных
поражений развиваются у
населения при воздействии
поражающих факторов
ядерных взрывов или
радиационных аварий?

Радиационное поражение персонала и населения при разрушении АЭС

Поражение человека

За счет внешнего гамма-облучения при
прохождении облака.

при загрязнении помещений и
местности.
За счет внешнего бета-гамма-облучения
при наружном радиоактивном
загрязнении кожи и слизистых.
Внутреннее облучение за счет вдыхания
(ингаляции) радионуклидов
Внутреннее облучение в результате
потребления загрязненных продуктов
питания и воды.

Основные принципы защиты
от ионизирующих излучений?

Радиационная защита – система мероприятий, делающих воздействие радиации безопасным.

Защита временем - ограничение времени
пребывания в зоне заражения и
недопущение превышения допустимой
дозы.
Защита расстоянием - интенсивность
излучения уменьшается с увеличением
расстояния от источника излучения.
Экранирование - уменьшение мощности
излучения счет применения специальных
устройств из поглощающих материалов.
Слой половинного ослабления – толщина
слоя, при котором излучение ослабляется
вдвое.

Какие мероприятия
проводятся для защиты людей
при возникновении ЧС
радиационной природы?

Общие меры защиты населения на различных фазах радиационной аварии

Мероприятия мед.службы по
предупреждению
возникновения радиационных
поражений?

1. Защита учреждений, частей и подразделений
медслужбы от действия поражающих факторов.
2. Обеспечение л/с (населении) индивидуальными
медицинскими средствами защиты и обучение
правилам их использования.
3. Обучение правилам использования технических
СИЗ.
4. Проведение лечебно-эвакуационных мероприятий.
5. Медицинское обеспечение население,
спасательных работ.
6.Экспертиза воды и продовольствия.
7. Контроль за выполнением правил поведения на
зараженной местности, за соблюдением мер защиты
питьевой воды, контроль за приготовлением и
приемом пищи на зараженной местности.
8. Медицинское наблюдение за лицами, которые
подверглись воздействию ионизирующего
облучения.

Какие средства защиты
используются для
предотвращения
ингаляционного заражения
продуктами ядерного взрыва?

1. Коллективные:
- убежища
- помещения с закрытыми, а
еще лучше законопаченными,
окнами и дверями,
выключенной вентиляцией.
2. СИЗОД: ватно-марлевые
повязки, респираторы,
противогазы.

Перечислите меры защиты от
внутреннего облучения в
результате потребления
зараженного РВ
продовольствия и воды?

1. Не допускать потребления воды и пищевых
продуктов, уровень заражения которых
превышает безопасный.
2. Приготовление пищи на открытой местности
допускается при уровне радиации не более 1 Р/ч;
При 1 - 5 Р/ч кухни следует развертывать в
палатках.
Если уровень радиации еще выше,
приготовление пищи допускается лишь в
дезактивированных закрытых помещениях,
территория вокруг которых должна быть также
дезактивирована или увлажнена. Прием пищи
на открытой местности при уровне радиации
более 5 Р/ч допускается лишь после
дезактивации и увлажнения территории.
3. Контроль уровня радиоактивного
загрязнения воды и продовольствия

Какова доза внешнего
облучения, не приводящая к
снижению боетрудоспособности, для лиц,
находящихся на следе
радиоактивного облака?

ОСНОВНОЙ РАДИАЦИОННЫЙ ФАКТОР
на следе облака ядерного взрыва или аварийного радиационного
выброса –
ОБЩЕЕ ВНЕШНЕЕ РАВНОМЕРНОЕ ГАММА ОБЛУЧЕНИЕ
попадание радиоактивных веществ на кожу или во внутрь
организма может лишь несколько увеличить поражающий эффект
внешнего облучения.
Порог дозы общего однократного равномерного
облучения для развития лучевого поражения
человека: 1 Гр.

Дайте определение
радиационной обстановке?
Какие критерии ее
характеризуют?

Дайте определение
радиационной
обстановке?
Какие критерии ее
характеризуют?

Радиационная обстановка (РО)

Это обстановка в зоне РЗМ,
представляющая собой
совокупность параметров,
характеризующих степень
опасности радиоактивного
заражения для населения,
сил ГО и персонала
промышленных объектов.

Основными параметрами радиационной обстановки являются:

Характер зараженности объектов и
сред - физико-химические
свойства, нуклидный состав
радиоактивных загрязнений.
Степень зараженности объектов и
сред – характеризуется мощностью
экспозиционной дозы.
Масштабы радиоактивного
заражения местности –
определяются конфигурацией и
размерами зон РЗМ.

Радиационная обстановка определяется:

характером радиационной
аварии (видом и
мощностью ядерного
взрыва);
метеоусловиями
(направление и скорость
ветра, наличие осадков).

Что такое выявление и оценка
радиационной обстановки?

ВЫЯВЛЕНИЕ РАДИАЦИОННОЙ ОБСТАНОВКИ

Выявляется вся совокупность условий,
возникших вследствие аварии
(применения ЯО), которые могут влиять
на жизнедеятельность людей:
радиоактивное заражение местности,
атмосферы, боевой техники, имущества,
воды, продовольствия и т.д.; масштаб,
интенсивность и продолжительность
заражения.
Эти условия определяются непосредственно, либо
рассчитываются.
Результатом
этого
этапа
является
тактическая характеристика очага.

Оценка радиационной обстановки – определение
степени влияния радиоактивного загрязнения
на спасателей и население.
Рассчитываются дозы облучения, которые может получить
личный состав и население,
и связанные с этим
радиационные потери.
Принимаются решения о дальнейшем поведении личного
состава и населения на РЗМ.
Прогнозируется
вероятность,
характер
и
сроки
формирования поражений личного состава, населения
при том или ином варианте действий в очаге.
Этот этап составляет непосредственную основу для
планирования медицинской помощи пострадавшим, а
также для выбора оптимального варианта действий в
очаге.

Какие методы можно
использовать для выявления и
оценки радиационной
обстановки?

Методы определения дозы облучения

1. Прогностические - путем 2. По данным
проведения расчетов
радиационной
на основании
разведки и
справочных данных о
дозиметрического
параметрах ядерного
контроля
взрыва,
метеоусловиях и др.:
■ простейшие (графический, с
применением «правила
семёрок» и т.д).;
■ с использованием
справочников,
дозиметрических линеек

При прогнозировании решают
следующие задачи:
1. Определить и нанести на карту
предполагаемый след выпадения
радиоактивных осадков.
2. Рассчитать возможные
санитарные потери.
3. Рассчитать допустимое время
пребывания людей в ЗРЗ.
4. Определить наиболее
целесообразные действия войск и
населения.

При оценке радиационной
обстановки указывается:
1. Число пострадавших, в т.ч. от
ионизирующего излучения.
2. Требуемые силы и средства
органов здравоохранения.
3. Наиболее целесообразные
действия персонала аварийного
объекта и ликвидаторов.
4. Меры защиты различных
контингентов населения.

Практическая работа № 1
«Выявление
радиационной
обстановки расчетным
методом»

Графический

Р1 + Р 2
Д = Δt -----------2
, где Д - доза облучения личного состава
Р1 - мощность дозы излучения в момент входа на РЗМ
Р2 - мощность дозы излучения в момент выхода из РЗМ
t1 – время входа на РЗМ, исчисляемое с момента ядерного взрыва
t2– время выхода с РЗМ, исчисляемое с момента ядерного взрыва
Δt=t2–t1

Расчет мощности дозы излучения в определенный период времени

Р2 / Р1 = (t1 / t2) / 1,2
Р2 = Р1 х (t1 / t2) / 1,2
На следе облака аварийного
радиационного выброса:
Атомный реактор проработал менее 1
года:
Р2 = Р1 х (t1 / t2) / 0,8
Атомный реактор проработал более 1
года:
Р2 = Р1 х (t1 / t2) / 0,5

Порог дозы общего однократного равномерного облучения для развития лучевого поражения человека:

1 Гр

Патогенетическая классификация острой
лучевой болезни
от внешнего облучения
Клиническая форма
Степень тяжести
Доза, Гр (+ 30 %)
Костномозговая
1 (легкая)
Костномозговая
2 (средняя)
1–2
2–4
Костномозговая
3 (тяжелая)
Костномозговая
(переходная)
4 (крайне
тяжелая)
Кишечная
Токсемическая
(сосудистая)
Церебральная
4–6
6 – 10
-
10 – 20
20 – 50
-
Более 50

К поражающим факторам радиационных аварий на ядерных энергетических установках с выбросом РВ, формирующих медико-санитарные последствия, относятся:

Воздействие ионизирующего излучения;

Воздействие механического и термического факторов при взрывах и пожарах на ядерных энергетических установках;

Воздействие психоэмоционального фактора.

К основным типам ионизирующего излучения относятся a-, b-, g- и нейтронное излучения.

g-излучение не является самостоятельным типом радиоактивности. Обычно все типы радиоактивности сопровождаются испусканием g-излучения – жесткого, коротковолнового электромагнитного излучения. g-излучение является основной формой уменьшения энергии возбужденных продуктов радиоактивных превращений, в том числе и при ядерных реакциях. Оно сопровождает процессы a- и b-распадов и не вызывает изменения заряда и массового числа ядер. g-излучение испускается дочерним ядром, которое в момент своего образования становится возбужденным.

Излучения разных видов оказывают неодинаковое воздействие на организм человека, что объясняется разной их ионизирующей способностью (ионизация – превращение атомов и молекул облучаемой среды в положительно и отрицательно заряженные частицы – ионы).

Так, a-излучения, представляющие собой тяжелые (ядра гелия), имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия вследствие ионизации быстро уменьшается. Поэтому a-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие a-частицы не попадут внутрь организма.

b-частицы (отрицательно или положительно заряженные электроны или положительно заряженные позитроны с непрерывным энергетическим спектром) на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у a-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). b-излучения опасны для человека, особенно при попадании РВ на кожу или внутрь организма.

Министерство Здравсоцразвития РФ

Санкт-Петербургский Государственный Медицинский Университет им. Академика И.П.Павлова

Кафедра военной и экстремальной медицины

начальник кафедры к.м.н. полковник МС Г.И.Зайцев

«Поражающие факторы радиационных аварий»

Студент 519 группы

Стеканов П.А.

Преподаватель:

Майор МС Бутов А.Ю.

Санкт-Петербург 2006

Согласно определению НРБ-99 (Нормы радиационной безопасности-99 - действующие в России санитарные нормы , регламентирующие допустимые уровни воздействия ионизирующего излучения и другие требования по ограничению облучения человека, относится к государственным санитарно-эпидемиологическим правилам и нормам):

Радиационная авария -″потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или радиоактивному загрязнению окружающей среды″.

Поражающие факторы радиационной аварии - физические процессы и явления, которые возникают при ядерной аварии и определяют её поражающее воздействие. Характер, степень и продолжительность воздействия поражающих факторов зависят от вида аварии, мощности ядерного заряда, вида взрыва, расстояния от его эпицентра, степени защиты объектов, метеорологических условий и характера местности.

Главной опасностью аварий на РОО был и будет выброс в окружающую природную среду РВ, сопровождающийся тяжелыми последствиями. Радиационная авария присуща не только АЭС, но и всем предприятиям ядерного топливного цикла, а также предприятиям, использующим радиоактивные вещества. К таким предприятиям можно отнести предприятия, добывающие урановую или ториевую руду; заводы по переработке руды; обогатительные заводы, заводы по изготовлению ядерного топлива; хранилища РВ и многие другие. Радиационные аварии на РОО могут возникнуть в процессе испытаний, хранения, транспортировки ядерного оружия.

Основным поражающим фактором при авариях на реакторах АЭС это радиоактивные загрязнения местности и источником загрязнения является атомный реактор как мощный источник накопленных радиоактивных веществ. Рассмотрим образование поражающих факторов и их воздействие при аварии на АЭС:

1. Ударная волна (сейсмическая) образуется только при ядерном взрыве реактора, при тепловом взрыве ее действие на окружающую среду незначительно

2. Световое излучение.

3. Электромагнитный импульс

4. Проникающая радиация, может оказать воздействие, в основном, на работающую смену персонала.

5. Радиоактивное заражение местности в результате выбросов продуктовраспада в атмосферу во всех случаях будет значительным и на больших площадях.

В отличии от этого при классическом же ядерном взрыве в зависимости от мощности заряда и условий взрыва энергия взрыва распределяется следующим образом:

Ударная волна - 40-60 %

Световое излучение - 30-50 %

Проникающая радиация - 5 %

Радиоактивное заражение - 5-10 %

Электромагнитный импульс – доли %

т.е. кроме радиационного заражения достаточно велик удельный вес других поражающих факторов.

Специалисты выделяют следующие потенциальные последствия радиационных аварий:

1.немедленные смертельные случаи и травмы среди работников предприятия и населения;

2.латентные смертельные случаи заболевания настоящих и будущих поколений, в том числе изменения в соматических клетках, приводящие к возникновению онкологических заболеваний, генетические мутации, оказывающие влияние на будущие поколения, влияние на зародыш и плод вследствие облучения матери в период беременности;

3.материальный ущерб и радиоактивное загрязнение земли и экосистем;

4.ущерб для общества, связанный с боязнью относительно потенциальной возможности использования ядерного топлива для создания ядерного оружия.

К последствиям серьезных радиационных аварий относится и наличие косвенного риска для здоровья и жизни людей. Косвенный риск возникает при непосредственном осуществлении мер безопасности, эвакуации при аварии. Например: эвакуационные мероприятия, вызванные радиационной аварией, обусловливают возникновение множества косвенных рисков: смертельные случаи вследствие дорожно-транспортных происшествий, увеличение числа сердечных приступов у эвакуируемого населения, психические травмы, вызванные стрессовой ситуацией во время эвакуации, и т.п.

Ударная волна

Ударная волна – это область резкого сжатия среды, которая в виде сферического слоя распространяется во все стороны от места взрыва со сверхзвуковой скоростью. В зависимости от среды распространения различают ударную волну в воздухе, в воде или грунте (сейсмовзрывные волны).

Ударная волна в воздухе образуется за счет колоссальной энергии, выделяемой в зоне реакции, где исключительно высокая температура, а давление достигает миллиарды атмосфер.

Раскаленные пары и газы, стремясь расшириться, производят резкий удар по окружающим слоям воздуха, сжимают их до большого давления и плотности и нагревают до высокой температуры. Эти слои воздуха приводят в движение последующие слои. И так сжатие и перемещение воздуха происходит от одного слоя к другому во все стороны от центра взрыва, образуя воздушную ударную волну.

Расширение раскаленных газов происходит в, сравнительно, малых объемах, поэтому их действие на более заметных удалениях от центра ядерного взрыва исчезает и основным носителем действия взрыва становится воздушная ударная волна.

Вблизи центра взрыва скорость распространения ударной волны в несколько раз превышает скорость звука в воздухе. С увеличением расстояния от места взрыва скорость распространения ударной волны быстро падает и ослабевает. На больших удалениях ударная волна переходит обычную акустическую волну, и скорость ее распространения приближается к скорости звука в окружающей среде, т.е. 330 м/сек.

Воздушная ударная волна при ядерном взрыве средней мощности проходит, примерно, 1000 м за 1,4 сек., 2000 м. за 4 сек., 3000 м, за 7 сек.

Отсюда следует вывод, что человек увидев вспышку ядерного взрыва, за время до прихода ударной волны, может занять ближайшее укрытие, и тем самым уменьшить вероятность поражения ударной волной. Основными параметрами ударной волны, определяющими ее поражающее действие, являются:

Избыточное давление во фронте волны (разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед этим фронтом);

Скоростной напор воздуха (динамическая нагрузка, создаваемая потоком воздуха движущимся в волне);

Время действия избыточного давления (продолжительность фазы сжатия)

При воздушной ударной волне передняя граница сжатого воздуха характеризуется резким увеличением давления и образует фронт ударной волны Р ф. Кроме того, ударная волна характеризуется давлением скоростного напора Р ск, временем действия максимального избыточного давления  + - фаза сжатия и временем действия пониженного давления  – - фаза разрежения (рис. 1). Р ф и Р ск измеряются в кг. с/см 2 (внесистемная единица) или паскалях (по системе СИ). 1 кгс/см 2  100 кПа.

В зависимости от мощности q и расстояния до точки взрыва R избыточное давление , в кПа, во фронте ударной волны для наземного взрыва определяется по эмпирической формуле

,

где q ув = 0,5q ; q - тротиловый эквивалент мощности взрыва, кг; R - расстояние до центра взрыва, м.

Избыточное давление во фронте ударной волны  Р ф оказывает на объект ударное действие, и объект испытывает повышенное давление со всех сторон, если его геометрические размеры меньше длины фазы сжатия. Если это давление выше критических величин, то объект получает различные повреждения, вплоть до разрушения. Степень разрушения зданий, сооружений также определяется величиной скоростного напора Р ск, т. е. торможения масс воздуха, следующих за фронтом ударной волны. В результате создается динамическая нагрузка, т. е. скоростной напор.

Давление скоростного напора

Из формулы следует, что давление скоростного напора Р ск меньше величины избыточного давления во фронте ударной волны  Р ф и всегда положительно.

Фаза сжатия - это отрезок времени, когда избыточное давление во фронте ударной волны и давление скоростного напора имеют наибольшие значения. Фаза сжатия зависит от мощности взрыва q .

По окончании действия фазы сжатия  + объект попадает в фазу разрежения   , в которой давление, оказываемое на объект, существенно уменьшается, а поэтому и разрушения в этой фазе существенно меньше, чем в фазе сжатия. При практических расчетах давление в фазе сжатия не учитывается.

Энергия распределяется по всему пройденному расстоянию, поэтому сила воздействия ударной волны уменьшается пропорционально кубическому корню расстояния от эпицентра

В случае возникновения ударной волны люди, здания, сооружения могут находиться под прямым или косвенным воздействием ударной волны. Прямое воздействие ударной волны на человека носит травматический характер, а при воздействии на здания, сооружения - разрушительный характер.

Прямое воздействие ударной волны на человека приводит к травматическим последствиям, тяжесть которых зависит от величины давления во фронте ударной волны. Все травмы подразделяются по степени тяжести на легкие, средние, тяжелые и крайне тяжелые. Открыто расположенные люди получают легкие травмы при избыточном давлении во фронте ударной волны 20–40 кПа. В этом случае человек может получить незначительные повреждения: ушибы, вывихи конечностей, временное повреждение слуха, легкие контузии.

Средние травмы человек получает при давлении 40–60 кПа, которые характеризуются серьезными контузиями, повреждениями слуха, кровотечением из носа и ушей, вывихами, переломами конечностей.

Тяжелые травмы наступают при давлении 60–100 кПа и характеризуются тяжелыми контузиями, значительными переломами конечностей, сильным кровотечением из носа и ушей.

Крайне тяжелые травмы человек получает при избыточном давлении более 100 кПа и такие травмы, как правило, оканчиваются летальным исходом.

Прямое воздействие избыточного давления во фронте ударной волны и скоростной напор на здания, сооружения и т. д. приводит к их частичному или полному разрушению. Разрушения зданий, сооружений в зависимости от величины давления могут быть слабыми, средними, сильными и полными.

Косвенное воздействие ударной волны происходит за счет действия на людей, здания, сооружения и другие объекты обломков (зданий, сооружений, падающих деревьев и др.), появляющихся в результате действия прямой ударной волны.

Для уменьшения поражающего действия ударной волны необходимо выполнять требования строительных норм и при строительстве не допускать отклонений от проекта в сторону ухудшения прочностных характеристик для удешевления строительства.

Под воздействием ударной волны создаются очаги поражения, разрушения, размеры которых зависят от мощности и вида взрыва, рельефа местности.

Граница очага поражения на равнинной местности условно ограничивается радиусом с избыточным давлением во фронте ударной волны 10 кПа (0,1 кгс/см).

Очаги поражения делятся на зоны полных, сильных, средних и слабых разрушений (рис. 2).

Зона полных разрушений на внешней границе имеет избыточное давление во фронте ударной волны 50 кПа. Зона сильных разрушений на внутренней и внешней границах имеет избыточное давление во фронте ударной волны 50 и 30 кПа соответственно. Зона средних разрушений лежит между 30 и 20 кПа, и на внешней границе зоны слабых разрушений избыточное давление во фронте ударной волны 10 кПа.

Ударная волна в воде при подводном ядерном взрыве качественно напоминает ударную волну в воздухе. Однако подводная ударная волна отличается от воздушной ударной волны своими параметрами. На одних и тех же расстояниях давление во фронте ударной волны в воде гораздо больше, чем в воздухе, а время действия меньше. Например, максимальное избыточное давление на расстоянии 900 м от центра ядерного взрыва мощностью 100 кт. в глубоком водоеме составляет 19000 кПа, а при взрыве в воздушной среде около 100 кПа.

Световое излучение

Световое излучение представляет собой электромагнитное излучение в ультрафиолетовой, видимой и инфракрасной частях спектра. Источником светового излучения является светящаяся область, состоящая из нагретых до высоких температур конструкционных материалов и воздуха. Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °С. Когда температура снижается до 1700 °C, свечение прекращается. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения - максимальная интенсивность солнечного света 0.14 Вт/см²).

Время действия светового излучения и размеры светящейся области зависит от мощности ядерного взрыва. С ее увеличением они возрастают. По длительности свечения можно ориентировочно судить о мощности ядерного взрыва.

Время действия светового излучения наземных и воздушных взрывов мощностью 1 тыс.т. составляет 1 сек., 10 тыс.т. – 2,2 сек., 100 тыс.т. – 4,6 сек.

Поражающее действие светового излучения объясняется поглощением лучистой энергии телом, что приводит к его нагреву, и характеризуется световым импульсом , под которым понимают отношение световой энергии за все время действия светового излучения к площади освещенной поверхности, расположенной перпендикулярно распространению световых лучей. За единицу светового импульса в системе СИ принят джоуль на квадратный метр (Дж/м 2). Внесистемная единица – калория на 1 см.кв. 1 кал/см.кв. 4,2х10 4 Дж/м 2 .

Световой импульс зависит от вида и мощности взрыва Q (q ), в кт, расстояния до центра взрыва R , в км, и коэффициента ослабления светового излучения средой распространения k , 1/км. (отражает состояние атмосферы)

Величина светового импульса

При расчетах устойчивости k = 0,1, т.е. берутся наихудшие условия, когда поглощение светового излучения средой минимально.

Световое излучение, действуя на незащищенных людей, вызывает ожоги открытых участков тела и вызывает поражение глаз.

Ожоги, в зависимости от величины светового импульса, могут быть трех степеней:

1 - световое излучение вызывает некоторые болезненные ощущения, гиперемию и отёк кожи, может иметь место некоторое повышение температуры тела (И =100–200 кДж/м 2);

2 - на коже человека могут возникнуть тонкостенные пузыри с серозным содержимым, сильные болезненные ощущения, повышение температуры тела (И = 200-400 кДж/м 2);

3 - имеет место некроз кожи, появляются язвы на коже человека, сильные болезненные ощущения, значительное повышение температуры тела (И = 400–600 кДж/м 2).

4 -некроз кожи и подлежащих тканей.

Тяжесть поражения от воздействия светового излучения зависит не только от степени глубины ожога, но и от размеров пораженных участков, их локализации, вплоть до развития ожоговой болезни.

Кроме ожогов кожи, световое излучение вызывает поражение глаз:

Временное ослепление после взгляда на светящуюся область - длится в течение нескольких минут. Особенно действен световой импульс в ночное время суток;

Ожоги глазного дна возникают в результате прямого взгляда на светящуюся область;

Ожоги роговицы и век глаз возникают при тех же условиях, что и ожоги незащищенных участков кожи.

Следует учитывать, что роговица и веки глаз имеют не такую грубую структуру как кожный покров, поэтому и величины светового импульса, вызывающего поражения, будут меньше.

При защищенных глазах временное ослепление и ожоги глазного дна сводятся к минимуму.

Для защиты людей от светового излучения можно использовать любую тень, укрытие, жалюзи, шторы на окнах и т. д.

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах

Тепловое воздействие светового излучения может вызвать повреждения линий связи, деформацию металлоконструкций, возгорание деревянных сооружений, что может привести к возникновению пожаров в населенных пунктах, лесах. Вероятность возникновения пожаров зависит от мощности и длительности светового импульса, огнестойкости материалов, плотности и характера городской застройки.

При небольшой мощности взрыва время действия светового импульса τ си незначительно и промежуток времени между приходом светового импульса и ударной волной мал, а поэтому еще не успеет произойти возгорания, как приходящая ударная волна успеет погасить очаг возгорания. При больших мощностях взрыва время действия светового импульса τ си увеличивается, и приходящая ударная волна усиливает процесс воспламенения, так как процесс возгорания уже установился (ударная волна отстает от светового излучения).

Для защиты от подобного воздействия светового излучения необходимо принимать меры обычной пожарной безопасности.

Электромагнитный импульс

При ядерных взрывах в атмосфере возникают мощные электромагнитные поля с волнами от 1 до 1000 м и более. В силу кратковременности существования таких полей их принято называть электромагнитным импульсом. Хотя оно и не оказывает никакого прямого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру: поражающее действие обусловлено возникновением электрических напряжений и токов в проводах, кабелях воздушных и подземных линий связи, сигнализации электропередач, антеннах радиостанций, это приводит к пробоям изоляции и выходу из строя электроприборов - полупроводниковые приборы, различные электронные блоки, трансформаторные подстанции и т. д. В отличие от полупроводников, электронные лампы не подвержены воздействию сильной радиации и электромагнитных полей. Помимо этого большое количество ионов, возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций.

Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне 4-30 км он относительно слаб, сильнее при взрыве ниже 4 км, и особенно силён при высоте подрыва более 30 км.

Одновременно с ЭМИ возникают радиоволны, распространяющиеся на большие расстояния.

Проникающая радиация

Проникающей радиацией ядерного взрыва называют поток гамма-излучения и нейтронов испускаемых из зоны и облака ядерного взрыва. Источниками проникающей радиации являются ядерные реакции протекающие в эпицентре в момент взрыва и радиоактивный распад осколков (продуктов) деления в облаке взрыва.

Время действия проникающей радиации на наземные объекты составляет 15-25 сек. и определяется временем подъема облака взрыва на такую высоту (2-3 км.), при которой гамма-нейтронное излучение, поглощаясь толщей воздуха, практически, не достигает поверхности земли. Радиус поражения проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и ударной волны, поскольку она сильно поглощается атмосферой. Проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов.

Поражающее действие проникающей радиации уменьшается:

По мере удаления от эпицентра ядерного взрыва

За преградами из материалов, поглощающих и рассеивающих гамма-излучение и нейтроны.

Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, электронных, оптических и других приборах за счет нарушения кристаллической решетки вещества и других физико-химических процессов под воздействием ионизирующих излучений.

Поражение человека будет рассмотрено ниже.

Защитой от проникающей радиации служат различные материалы, ослабляющие гамма-излучение и поток нейтронов. Ее уровень снижается в 10 раз после прохождения 11 см стали, либо 35 см бетона, либо 50 см грунта/кирпичной кладки, либо 1 м древесины.

Радиоактивное заражение

Радиоактивное загрязнение местности возникает в результате выпадения РВ на поверхность земли из радиоактивного облака вместе с осадками. Радиоактивные облака возникают в результате ядерных взрывов, разрушения ядерных реакторов, АЭС и т. д.

Местность в экстремальных ситуациях считается загрязненной, если уровень радиоактивного излучения на высоте 70 см от поверхности земли не меньше 0,5 Р/ч.

Источниками радиоактивного загрязнения местности (РЗМ) являются:

продукты деления ядерного горючего (урана, плутония). В этом случае имеют место - и -излучения;

не разделившаяся часть горючего при ядерном взрыве, так как в реакции деления взрывного характера принимает участие примерно 20 % горючего. Оставшаяся часть горючего загрязняет территорию и является источником -излучений;

наведенная активность в почве. Под воздействием нейтронного потока в грунте образуется ряд радиоактивных изотопов: алюминий-28, натрий-24, магний-24, которые при своем распаде выделяют - и -излучения.

Рассмотрим образование РЗМ в случае аварии, разрушения АЭС, ядерных реакторов.

Ядерные реакторы и АЭС являются потенциально опасными для окружающей среды, а поэтому при проектировании таких объектов предусматривается решение вопросов безопасности обслуживающего персонала и населения. Особенностью аварии на АЭС, ядерных реакторах является то, что процесс деления ядерного топлива, используемого в ядерных реакторах, продолжается длительное время. Поэтому в случае разрушения реактора в атмосферу могут длительное время поступать РВ. Подъем РВ осуществляется на незначительную высоту (800–1000 м), что объясняется небольшой мощностью теплового взрыва ядерного реактора (порядка 0,04 кт). На этой высоте и в течение длительного времени ветер меняет свое направление много раз, а поэтому ярко выраженного, как при ядерном взрыве, следа радиоактивного облака нет. РВ соединяется с дождевыми облаками и перемещается вместе с ними. Из дождевых облаков РВ выпадают вместе с осадками. В результате этого загрязненные территории могут быть значительными по своим размерам и находиться на очень больших расстояниях от места аварии, как это было в результате аварии на Чернобыльской АЭС.

Связь между дозой облучения за время до полного распада Д и уровнем радиации P (t ) зар за время заражения t зар выражается соотношением

Д  = 5 P (t ) зар t зар.

В идеальном случае на равнинной местности при равномерном ветре одного направления радиоактивный след имеет форму эллипса и условно делится на зоны загрязнения, границы которых характеризуются дозой излучения, полученной человеком за время от момента образования следа до полного радиоактивного распада вещества Д или уровнем радиации на 1 ч после аварии (рис. 4).

Рис. 4. Распределение уровней радиации по следу радиоактивного облака 1,2 - след и ось облака, 3,4- уровни радиации вдоль и на ширине следа

При аварии, разрушении АЭС, ядерных реакторов загрязненная территория по уровням радиации делится на 5 зон:

М - зона слабого РЗМ с уровнем радиации на 1 ч после аварии Р 1 = 0,025–0,1 Р/ч;

А - зона умеренного загрязнения с уровнями радиации на границах зоны Р 1 = 0,1–1,0 Р/ч;

Б - зона среднего загрязнения с уровнями радиации на границах зоны Р 1 = 1,0–3,0 Р/ч;

В - зона опасного загрязнения с уровнями радиации на границах зоны Р 1 = 3,0–10,0 Р/ч;

Г - зона чрезмерно опасного загрязнения с уровнями радиации на внешней границе зоны Р 1 = 10,0 Р/ч.

С течением времени из-за естественного распада РВ уровни радиации на следе радиоактивного облака уменьшаются по экспоненциальному закону:

где P 0 - уровень радиации в момент времени t 0 после аварии на АЭС, ядерных реакторах и т. д.; P (t ) - уровень радиации в момент времени t , т. е. времени измерения уровня радиации или времени начала работ в зоне РЗМ; n - показатель степени, характеризующий величину спада уровня радиации и зависящий от изотопного состава радионуклидов и продолжительности их жизни. Так при ядерном взрыве n = 1,2, а при аварии, разрушении АЭС, ядерных реакторов n = 0,4–0,5 (рис. 5).

Рис. 5. Изменение уровня радиации во времени

Для ядерного взрыва уровень радиации через 7 ч после взрыва уменьшается в 10 раз, через 2 суток - в 100 раз и через 7 недель - в 1000 раз. Уменьшение же уровня радиации в результате аварии на АЭС, ядерных реакторах происходит существенно медленнее.

Оценка дозы облучения . Зная уровень радиоактивного загрязнения местности P (t ), т. е. уровень радиации на момент времени измерения или начала работ на загрязненной территории, можно определить дозу облучения Д обл, которую получит человек за интервал времени от начала облучения (время начала работ в зоне, время входа в зону) до конца облучения (время выхода из зоны, время конца работы в зоне).

Для определения дозы облучения можно воспользоваться выражением

После интегрирования

Радиационная авария - это нарушение правил безопасной эксплуатации ядерно-энергетической установки, оборудования или устройства, при котором произошел выход радиоактивных продуктов или ионизирующего излучения за предусмотренные проектом пределы их безопасной эксплуатации, приводящей к облучению населения и загрязнению окружающей среды.

Основными поражающими факторами радиационных аварий являются:

воздействие внешнего облучения (гамма - и рентгеновского; бета - и гамма-излучения; гамма-нейтронного излучения и др.)

внутреннее облучение от попавших в организм человека радионуклидов (альфа - и бетаизлучение);

сочетанное радиационное воздействие, как за счет внешних источников излучения, так и за счет внутреннего облучения;

комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.) .

Радиационные аварии - происшествие, приведшее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности.

Зонирование территории после аварии приведено на рис. 2. и в табл.1.

Рисунок 2 - Зонирование территории

При авариях, влекущих за собой радиоактивное загрязнение больших территорий, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии (ЗРА), представляющая собой территорию, на которой суммарное внешнее и внутреннее облучение в единицах эффективной дозы может превысить 5 мЗв за первый после аварии год (в среднем по населенному пункту).

Таблица 1 -Зоны заражения

Зараженная местность на следе выброса делится на 5 зон:

М - слабого заражения - 14 мрад/ч;

А - умеренного заражения - 140 мрад/ч;

Б - сильного заражения - 1,4 рад/ч;

В - опасного заражения - 4,2 рад/ч;

Г - чрезвычайно опасного заражения - 14 рад/ч.

Определение зон радиоактивного заражения необходимо для планирования действий работающих на объекте, населения, подразделений МЧС; для планирования мероприятий по защите контингентов людей; определения возможного количества пострадавших вследствие аварии.

Зоны заражения представлены на рисунке 3.


Рисунок 3 - Зоны заражения

Зона А -- умеренного заражения, зона радиации на внешней границе за час полного распада радиоактивных веществ 40 Р, на внутренней границе -- 400 Р. Эталонный уровень радиации через час после взрыва на внешней границе зоны -- 8 Р/час. Площадь этой зоны 78 -- 80 % от всей территории взрыва.

Зона Б -- сильного заражения, доза радиации на внешней границе зоны за час полного распада радиоактивных веществ составляет 400 Р, а на внутренней -- 1200 Р. Эталонный уровень радиации составляет через час после взрыва на внешней границе зоны 80 Р/час. Площадь зоны 10 -- 12 % от площади радиоактивного следа.

Зона В -- опасного заражения, доза радиации на внешней границе зоны за час полного распада радиоактивных веществ составляет 1200 Р, а на внутренней -- 4000 Р. Эталонный уровень радиации составляет через час после взрыва на внешней границе зоны 240 Р/час. Площадь зоны 8 -- 10 % от площади радиоактивного следа.

Зона Г -- чрезвычайно опасного заражения, доза радиации на внешней границе зоны за час полного распада радиоактивных веществ составляет 4000 Р, а на внутренней -- 7000 Р. Эталонный уровень радиации составляет через час после взрыва на внешней границе зоны 800 Р/час. Площадь зоны 10 -- 12 % от площади радиоактивного следа.

В результате аварии на РОО наибольшую опасность для населения представляет радиоактивный выброс. В результате выброса возможно облучение людей и животных, а также радиоактивное загрязнение местности.

В связи с этим основными поражающими факторами при радиационных авариях являются:

  • * воздействие внешнего облучения (бета-, гамма-, рентгеновское, нейтронное излучение и др.);
  • * внутреннее облучение от попавших в организм человека радионуклидов (к перечисленным присоединяется альфа-излучение);
  • * сочетанное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;
  • * комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая или термическая травма, химический ожог и др.)

Пути поступления радиоактивных веществ в организм:

  • * ингаляционный путь;
  • * алиментарный;
  • * через поврежденную кожу;
  • * через слизистые.

На сформированном радиоактивном следе основным источником радиационного воздействия является внешнее облучение. Ингаляционное поступление радионуклидов практически исключено, если своевременно приняты меры защиты органов дыхания. Поступление радиоактивных веществ внутрь организма возможно в основном с продуктами питания и водой.

Основными нуклидами, формирующими внутреннее облучение в первые дни после аварии, являются радиоактивные изотопы йода, которые аккумулируются щитовидной железой. Наибольшая концентрация радиоактивного йода отмечается в молоке.

С учетом удаления времени от момента аварии практически остается 2 пути поступления радиоактивных веществ в организм: алиментарный и ингаляционный. Токсичность радиоактивных веществ при ингаляционном поступлении в 2-3 раза выше, чем при алиментарном пути поступления, так как путь поступления - слизистая оболочка верхних дыхательных путей находится вблизи лимфоидной ткани. По прошествии 2-3 месяцев после аварии основным источником внутреннего облучения становятся радиоактивные цезий, стронций и плутоний, попадание которых внутрь возможно с продуктами питания.

Метаболизм радиоактивных веществ в организме:

  • 1 стадия - образование первичного депо (в слизистой ЖКТ, ВДП);
  • 2 стадия - всасывание в кровь;
  • 3 стадия - инкорпорация в критических органах в зависимости от тропности вещества к тканям организма;
  • 4 стадия - выведение (80 % всех поступивших в организм). Радиоактивные вещества выводятся почками (90 % изотопов), на втором месте стоит ЖКТ, на третьем - кожа, потовые железы.

По характеру распределения в организме человека радиоактивные вещества можно условно разделить на 4 группы:

  • 1. локализуются преимущественно в скелете (кальций, стронций, радий, плутоний);
  • 2. концентрируются в печени (церий, лантан, плутоний и др.);
  • 5. равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.);
  • 6. радиоактивный йод избирательно накапливается в щитовидной железе.

Медицинская характеристика. Ранние эффекты облучения - острая лучевая болезнь, местные лучевые поражения (лучевые ожоги кожи и слизистых) - наиболее вероятны у людей, находящихся вблизи аварийного объекта. Не исключается возможность комбинированных поражений данной группы населения вследствие сопутствующих аварии пожаров, взрывов. Острое или хроническое облучение населения в малых дозах (менее 0,5 Зв.) может привести к отдаленным эффектам облучения. К ним относятся: катаракта, преждевременное старение, злокачественные опухоли, генетические дефекты.

Вероятность возникновения онкологических и генетических последствий существует даже при малых дозах облучения. Эти эффекты называются стохастическими (вероятными, случайными). Тяжесть стохастических эффектов не зависит от дозы, с ростом дозы увеличивается лишь вероятность их возникновения. Вредные эффекты, для которых существует пороговая доза и степень тяжести, нарастают с ее увеличением и называются нестохастическими (лучевая катаракта, нарушение детородной функции и др.).

Особое положение занимают последствия облучения плода (тератогенные эффекты). Особо чувствителен плод к облучению на 4-12-й неделях беременности.

Исходя из вышеизложенного, основные усилия для предупреждения патогенного воздействия радиоактивных веществ, необходимо направить на предотвращение попадания их в организм, уменьшения степени воздействия на организм попавших внутрь РВ и скорейшему их выведению из организма.

С этой целью необходимо организовать применение средств индивидуальной защиты и средств медицинской защиты всеми находящимися в очаге, а также проведение эвакуации согласно «Концепции по защите населения при авариях на АЭС».



Что еще почитать