Самая яркая туманность. Планетарные туманности

Некоторые примеры такого использования сохранились до сих пор. Например, Галактику Андромеды часто называют «Туманностью Андромеды».

По мере развития астрономии и разрешающей способности телескопов , понятие «туманность» всё более уточнялось: часть «туманностей» была идентифицирована как звёздные скопления, были обнаружены тёмные (поглощающие) газопылевые туманности и, наконец, в 1920-х годах , сначала Лундмарку , а затем и Хабблу , удалось разрешить на звёзды периферийные области ряда галактик и тем самым установить их природу. С этого времени термин «туманность» употребляется в приведённом выше смысле.

Типы туманностей

Первичный признак, используемый при классификации туманностей - поглощение или излучение (рассеивание) ими света , то есть по этому критерию туманности делятся на тёмные и светлые. Первые наблюдаются благодаря поглощению излучения расположенных за ними источников, вторые - благодаря собственному излучению или отражению (рассеиванию) света расположенных рядом звёзд. Природа излучения светлых туманностей, источники энергии, возбуждающие их излучение, зависят от их происхождения и могут иметь разнообразную природу; нередко в одной туманности действуют несколько механизмов излучения.

Деление туманностей на газовые и пылевые в значительной степени условно: все туманности содержат и пыль, и газ. Такое деление исторически обусловлено различными способами наблюдения и механизмами излучения: наличие пыли наиболее ярко наблюдается при поглощении излучения тёмными туманностями расположенных за ними источников и при отражении или рассеивании, или переизлучении пылью, содержащейся в туманности излучения расположенных поблизости или в самой туманности звёзд ; собственное излучение газовой компоненты туманности наблюдается при её ионизации ультрафиолетовым излучением расположенной в туманности горячей звезды (эмиссионные области H II ионизированного водорода вокруг звёздных ассоциаций или планетарные туманности) или при нагреве межзвёздной среды ударной волной вследствие взрыва сверхновой или воздействия мощного звёздного ветра звёзд типа Вольфа - Райе .

Тёмные туманности

Тёмные туманности представляют собой плотные (обычно молекулярные) облака межзвёздного газа и межзвёздной пыли, непрозрачные из-за межзвёздного поглощения света пылью. Обычно они видны на фоне светлых туманностей. Реже тёмные туманности видны прямо на фоне Млечного Пути . Таковы туманность Угольный Мешок и множество более мелких, называемых гигантскими глобулами .

Межзвёздное поглощение света A v в тёмных туманностях колеблется в широких пределах, от 1-10 m до 10-100 m в наиболее плотных. Строение туманностей с большими A v поддаётся изучению только методами радиоастрономии и субмиллиметровой астрономии, в основном по наблюдениям молекулярных радиолиний и по инфракрасному излучению пыли. Часто внутри тёмных туманностей обнаруживаются отдельные уплотнения с A v до 10 000 m в которых, по-видимому, формируются звёзды .

В тех частях туманностей, которые полупрозрачны в оптическом диапазоне, хорошо заметна волокнистая структура. Волокна и общая вытянутость туманностей связаны с наличием в них магнитных полей , затрудняющих движение вещества поперёк силовых линий и приводящих к развитию ряда видов магнитогидродинамических неустойчивостей. Пылевой компонент вещества туманностей связан с магнитными полями из-за того, что пылинки электрически заряжены.

Отражательные туманности

Отражательные туманности являются газово-пылевыми облаками, подсвечиваемыми звёздами . Если звезда (звёзды) находятся в межзвёздном облаке или рядом с ним, но недостаточно горяча (горячи), чтобы ионизовать вокруг себя значительное количество межзвёздного водорода , то основным источником оптического излучения туманности оказывается свет звёзд, рассеиваемый межзвёздной пылью . Примером таких туманностей являются туманности вокруг ярких звёзд в скоплении Плеяды .

Большинство отражательных туманностей расположено вблизи плоскости Млечного Пути . В ряде случаев наблюдаются отражательные туманности на высоких галактических широтах. Это газово-пылевые (часто молекулярные) облака различных размеров, формы, плотности и массы, подсвечиваемые совокупным излучением звёзд диска Млечного Пути. Они трудны для изучения из-за очень низкой поверхностной яркости (обычно много слабее фона неба). Иногда, проецируясь на изображениях галактик , они приводят к появлению на фотографиях галактик несуществующих в действительности деталей - хвостов, перемычек и т. п.

Отражательная туманность «Ангел» находится на высоте 300 пк над плоскостью галактики

Некоторые отражательные туманности имеют кометообразный вид и называются кометарными. В «голове» такой туманности находится обычно переменная звезда типа T Тельца , освещающая туманность. Такие туманности нередко имеют переменную яркость, отслеживая (с запаздыванием на время распространения света) переменность излучения освещающих их звёзд. Размеры кометарных туманностей обычно малы - сотые доли парсека .

Редкой разновидностью отражательной туманности является так называемое световое эхо , наблюдавшееся после вспышки новой звезды 1901 года в созвездии Персея . Яркая вспышка новой звезды подсветила пыль, и несколько лет наблюдалась слабая туманность, распространявшаяся во все стороны со скоростью света. Кроме светового эха после вспышек новых звёзд образуются газовые туманности, подобные остаткам вспышек сверхновых звёзд .

Многие отражательные туманности имеют тонковолокнистую структуру - систему почти параллельных волокон толщиной в несколько сотых или тысячных долей парсека . Происхождение волокон связано с желобковой или перестановочной неустойчивостью в туманности, пронизанной магнитным полем . Волокна газа и пыли раздвигают силовые линии магнитного поля и внедряются между ними, образуя тонкие нити.

Изучение распределения яркости и поляризации света по поверхности отражательных туманностей, а также измерение зависимости этих параметров от длины волны позволяют установить такие свойства межзвёздной пыли, как альбедо , индикатрису рассеяния, размер, форму и ориентацию пылинок.

Туманности, ионизованные излучением

Туманности, ионизованные излучением, - участки межзвёздного газа , сильно ионизованного излучением звёзд или других источников ионизующего излучения. Самыми яркими и распространёнными, а также наиболее изученными представителями таких туманностей являются области ионизованного водорода (зоны H II). В зонах H II вещество практически полностью ионизовано и нагрето до температуры ~10 4 К ультрафиолетовым излучением находящихся внутри них звёзд. Внутри зон HII всё излучение звезды в лаймановском континууме перерабатывается в излучение в линиях субординатных серий , в соответствии с теоремой Росселанда . Поэтому в спектре диффузных туманностей очень яркие линии Бальмеровской серии , а также линия Лайман-альфа. Лишь разреженные зоны H II низкой плотности ионизованы излучением звёзд, в т. н. корональном газе.

К туманностям, ионизованным излучением относятся также так называемые зоны ионизованного углерода (зоны C II), в которых углерод практически полностью ионизован светом центральных звёзд. Зоны C II обычно расположены вокруг зон H II в областях нейтрального водорода (H I) и проявляют себя по рекомбинационным радиолиниям углерода, аналогичным рекомбинационным радиолиниям водорода и гелия . Зоны C II наблюдаются также в инфракрасной линии C II (λ = 156 мкм). Для зон C II характерны низкая температура 30-100 К и малая степень ионизации среды в целом: N e /N < 10 −3 , где N e и N концентрации электронов и атомов. Зоны C II возникают из-за того, что потенциал ионизации углерода (11,8 эВ) меньше, чем у водорода (13,6 эВ). Излучение звёзд с энергией E фотонов 11,8 эВ E 13,6 эВ (Å) выходит за пределы зоны H II в область H I, сжатую ионизационным фронтом зоны H II, и ионизует там углерод. Зоны C II возникают также вокруг звёзд спектральных классов B1-B5, находящихся в плотных участках межзвёздной среды. Такие звёзды практически не способны ионизовать водород и не создают заметных зон H II.

Туманности, ионизованные излучением, возникают также вокруг мощных рентгеновских источников в Млечном Пути и в других галактиках (в том числе в активных ядрах галактик и квазарах). Для них часто характерны более высокие температуры, чем в зонах H II, и более высокая степень ионизации тяжёлых элементов.

Планетарные туманности

Разновидностью эмиссионных туманностей являются планетарные туманности, образованные верхними истекающими слоями атмосфер звёзд ; обычно это оболочка, сброшенная звездой-гигантом. Туманность расширяется и светится в оптическом диапазоне. Первые планетарные туманности были открыты У. Гершелем около 1783 года и названы так за их внешнее сходство с дисками планет . Однако далеко не все планетарные туманности имеют форму диска: многие имеют форму кольца или симметрично вытянуты вдоль некоторого направления (биполярные туманности). Внутри них заметна тонкая структура в виде струй, спиралей, мелких глобул. Скорость расширения планетарных туманностей 20-40 км/с, диаметр 0,01-0,1 пк, типичная масса около 0,1 массы Солнца, время жизни около 10 тыс. лет.

Туманности, созданные ударными волнами

Разнообразие и многочисленность источников сверхзвукового движения вещества в межзвёздной среде приводят к большому количеству и разнообразию туманностей, созданных ударными волнами . Обычно такие туманности недолговечны, так как исчезают после исчерпания кинетической энергии движущегося газа.

Основными источниками сильных ударных волн в межзвёздной среде являются взрывы звёзд - сбросы оболочек при вспышках сверхновых и новых звёзд , а также звёздный ветер (в результате действия последнего образуются т. н. пузыри звёздного ветра). Во всех этих случаях имеется точечный источник выброса вещества (звезда). Созданные таким образом туманности имеют вид расширяющейся оболочки, по форме близкой к сферической.

Выбрасываемое вещество имеет скорости порядка сотен и тысяч км/с, поэтому температура газа за фронтом ударной волны может достигать многих миллионов и даже миллиардов градусов.

Газ, нагретый до температуры несколько миллионов градусов, излучает главным образом в рентгеновском диапазоне как в непрерывном спектре, так и в спектральных линиях. В оптических спектральных линиях он светится очень слабо. Когда ударная волна встречает неоднородности межзвёздной среды, она огибает уплотнения. Внутри уплотнений распространяется более медленная ударная волна, вызывающая излучение в спектральных линиях оптического диапазона. В результате возникают яркие волокна, хорошо заметные на фотографиях. Основной ударный фронт, обжимая сгусток межзвёздного газа, приводит его в движение в сторону своего распространения, но с меньшей, чем у ударной волны, скоростью.

Остатки сверхновых и новых звёзд

Наиболее яркие туманности, созданные ударными волнами, вызваны взрывами сверхновых звёзд и называются остатками вспышек сверхновых звёзд. Они играют очень важную роль в формировании структуры межзвёздного газа. Наряду с описанными особенностями для них характерно нетепловое радиоизлучение со степенным спектром, вызванное релятивистскими электронами, ускоряемыми как в процессе взрыва сверхновой, так и позже пульсаром, обычно остающимся после взрыва. Туманности, связанные со взрывами новых звёзд , малы, слабы и недолговечны.

Туманности вокруг звёзд Вольфа - Райе

Шлем Тора - туманность вокруг звезды Вольфа - Райе

Другой тип туманностей, созданных ударными волнами связан со звёздным ветром от звёзд Вольфа - Райе . Эти звёзды характеризуются очень мощным звёздным ветром с потоком массы в год и скоростью истечения 1·10 3 -3·10 3 км/с. Они создают туманности размером в несколько парсек с яркими волокнами на границе астросферы такой звёзды. В отличие от остатков вспышек сверхновых звёзд радиоизлучение этих туманностей имеет тепловую природу. Время жизни таких туманностей ограничено продолжительностью пребывания звёзд в стадии звезды Вольфа - Райе и близко к 10 5 лет.

Туманности вокруг O-звёзд

Аналогичны по свойствам туманностям вокруг звёзд Вольфа - Райе , но образуются вокруг наиболее ярких горячих звёзд спектрального класса О - Of, обладающих сильным звёздным ветром . От туманностей, связанных со звёздами Вольфа - Райе, они отличаются меньшей яркостью, бо́льшими размерами и, видимо, большей продолжительностью жизни.

Туманности в областях звездообразования

Туманность Орион А - гигантская область звездообразования

Ударные волны меньших скоростей возникают в областях межзвёздной среды , в которых происходит звездообразование. Они приводят к нагреву газа до сотен и тысяч градусов, возбуждению молекулярных уровней, частичному разрушению молекул, нагреву пыли. Такие ударные волны видны в виде вытянутых туманностей светящихся преимущественно в инфракрасном диапазоне. Ряд таких туманностей обнаружен, например, в очаге звездообразования, связанном с туманностью Ориона.

Смотрящие из глубин космоса загадочные объекты давным-давно привлекали интерес людей, наблюдающих за небом. Еще древнегреческий ученый Гиппарх в своем каталоге отметил наличие в ночном небе нескольких туманных объектов. Его коллега Птолемей пополнил список еще пятью туманностями. В XVII веке Галилей изобрел телескоп и с его помощью смог увидеть туманности Ориона и Андромеды. С тех пор по мере совершенствования телескопов и других приборов начались новые открытия в космическом пространстве. А туманности отнесли к отдельному классу звездных объектов.

Со временем известных туманностей стало очень много. Они начали мешать ученым и астрономам в поисках новых объектов. В конце XVIII века, изучая определенные объекты – кометы, Шарль Мессье составил «каталог диффузных неподвижных объектов», которые были похожи на кометы. Но из-за отсутствия достаточной технической поддержки в этот каталог вошли как туманности, так и галактики вместе с шаровыми звездными скоплениями.

Так же, как совершенствовались телескопы, развивалась и сама астрономия. Понятие «туманность» обретало все новые краски и постоянно уточнялось. Некоторые виды туманностей идентифицировали в звездные скопления, некоторые отнесли к поглощающим, а в 20-х годах прошлого века Хаббл смог установить природу туманностей и выделить области галактик.

Портал сайт расскажет о теориях возникновения туманностей, их примерном количестве, типах и удаленности от нашей планеты. Портал оперируется сугубо научно-проверенными фактами и самыми популярными идеями.

Классификация и типы туманностей на портале сайт

Первоначальный принцип, по которому квалифицируют туманности, заключается в поглощении или рассеивании (излучении) ими света. Данный критерий делит туманности на светлые и темные. Излучение светлых зависит от их происхождения. А источники энергии, которые возбуждают их излучение, зависят от собственной природы. Очень часто в туманности могут действовать не один, а два механизма излучения. Темные можно увидеть только благодаря поглощению расположенных за ними источников излучения.

Но если первый принцип классификации точный, то второй (деление туманностей на пылевые и газовые), является условным принципом. Каждая туманность содержит пыль и газ. Это деление обусловлено разными механизмами излучения и способами наблюдения. Наличие пыли лучше всего наблюдается при процессе поглощения излучения темными туманностями, которые размещены за источниками. Собственное излучение газовых компонентов туманности просматривается при ее ионизации ультрафиолетом или при нагревании межзвездной среды. Последний процесс возможен после удара в нее волны, которая образовалась после взрыва сверхновой звезды.

Темная туманность представлена в виде плотного, чаще всего молекулярного облака межзвездной пыли и газа. Поглощая свет, облако становится непрозрачным. Чаще всего темные туманности видны на фоне светлых. Крайне редко ученые замечают их на фоне Млечного Пути. Их называют гигантскими глобулами.

Поглощение света Av у темных колеблется в больших пределах. Может достигать показателей: от 1–10 m до 10–100 m. Строение туманностей с большим поглощением можно изучить только благодаря методам субмиллиметровой астрономии и радиоастрономии, при наблюдениях по инфракрасному излучению и по молекулярным радиолиниям. Часто в самой туманности обнаруживаются отдельные уплотнения, имеющие показатель Av до 10000 m. По теориям передовых астрофизиков там формируются звезды.

В полупрозрачных частях туманностей в оптическом диапазоне отлично видно волокнистую структуру. Общая вытянутость и волокна связаны с присутствием магнитных полей, которые затрудняют перемещение вещества поперек магнитогидродинамических неустойчивостей и силовых линий. Эта связь происходит из-за того, что пылинки заряжены электричеством.

Еще одним ярким типом туманностей является отражательная туманность. Это газово-пылевые облака, подсвеченные звездами. Если звезды расположены в межзвездном облаке или возле него, но не сильно горячи, чтобы уменьшить вокруг себя количество водорода, то главным источником оптического излучения самой туманности становится рассеиваемый межзвездной пылью свет звезд. Яркий пример подобного явления находится вокруг звезд Плеяды.

Большая часть отражательных туманностей находится поблизости плоскости Млечного Пути. В некоторых случаях наблюдается наличие таких туманностей на высоких галактических широтах. Эти молекулярные облака имеют разные размеры, форму, плотность и массу и подсвечиваются совместным излучением звезд Млечного Пути. Их трудно изучить, поскольку поверхностная яркость очень низкая. Иногда, появляясь на изображениях галактик, на фотографиях видны несуществующие детали – перемычки, хвосты и т. п.

Небольшая часть отражательных туманностей имеет кометообразный вид. Их называют кометарными. В заглавии такой туманности, как правило, находится переменная звезда по типу Тельца. Она освещает туманность. Они переменны в яркости и имеют маленькие размеры примерно сотые доли парсека.

Световое эхо – самая редкая разновидность отражательной туманности. Яркий пример – образовавшаяся вспышка Новой звезды в созвездии Персея. Эта вспышка подсветила пыль, в результате чего образовавшаяся туманность просматривалась несколько лет. И при этом в космосе она двигалась со скоростью света. Помимо светового эха после таких происшествий образуются газовые туманности.

Большинство отражательных туманностей располагает тонковолокнистой структурой, то есть системой практически параллельных волокон. Их толщина может достигать нескольких сотых долей парсека. Данные волокна происходят в результате проникания магнитным полем в желобковую неустойчивость туманности. Волокна пыли и газа раздвигают силовые линии в магнитном поле и просачиваются между ними.

Такие свойства пыли, как альбедо, форма, ориентация пылинок, индикатор рассеивания и размер дали ученым и астронавтам возможность изучить распределение поляризации света и его яркости по поверхности отражательных туманностей.

Ионизованные излучением туманности – это участки межзвездного газа, которые сильно ионизованы излучением звезд. Это излучение также может появляться и из других источников. Более всего подобные туманности изучаются в областях ионизованного водорода, как правило, это зона Н II. В таких зонах вещество полностью ионизовано. Его температура составляет около 104 К. Нагревается из-за внутреннего ультрафиолетового излучения. Внутри зон Н II звездное излучение в Лаймановском континууме превращается в субординантно-серийное излучение (соответствуя теореме Росселанда). Из-за этого в спектре туманностей находятся яркие линии серии Бельмера и линии Лайман-альфа.

К таким туманностям относятся также зоны ионизированного углерода – С II. Углерод в них полностью ионизован светом звезд. Зоны С II, как правило, расположены вокруг зон Н II. Они получаются из-за низкого потенциала ионизации углерода в сравнении с водородом. Также они могут образоваться вокруг звезд с высоким спектральным классом в плотностях межзвездной среды. Ионизованные излучением туманности возникают еще вокруг сильных рентгеновских источников. У них более высокие температуры, нежели в зонах Н II, и сравнительно большая степень ионизации.

Самой распространенной разновидностью эмиссионных туманностей считаются планетарные туманности. Они созданы истекающими верхними слоями атмосфер звезд. Такая туманность светится и расширяется в оптическом диапазоне. Впервые их открыл в XVII веке Гершель и именовал их так из-за внешнего сходства с дисками планет. Но не все планетарные туманности представляют форму диска, некоторые имеют округлую форму кольца. Внутри таких туманностей наблюдается тонкого типа структура в виде спиралей, струй и мелких глобул. Такие туманности расширяются со скоростью 20 км/с, а масса их равна 0,1 массы Солнца. Живут они около 10 тысяч лет.

Портал сайт подает только проверенную и свежую информацию. Мы перенесем Вас в таинственный мир космоса. И благодаря астрономам и астрофизикам туманности уже не являются такой огромной загадкой, как были ранее.

Помимо обычных, долгоживущих, туманных образований существуют кратковременные, созданные ударными волнами. Они исчезают тогда, когда исчезает кинетическая энергия движущегося газа. Существует несколько источников для возникновения таких ударных волн. Чаще всего – это результат взрыва звезды. Реже – звездный ветер, вспышки новых и сверхновых звезд. В любом случае присутствует один источник выброса подобного вещества – звезда. Туманности такого происхождения имеют форму расширяющейся оболочки или форму сферы. Вещество, которое выбросилось в результате взрыва, может иметь различные скорости от сотен до тысяч км/с, из-за этого температура газа за ударной волной достигает не миллионов, а миллиардов градусов.

Нагретый до огромных температур газ излучается в рентгеновском диапазоне как в спектральных линиях, так и в непрерывном спектре. В спектральных оптических линиях он слабо светится. При встрече с неоднородностью межзвездной среды ударная волна огибает уплотнения. Внутри самого уплотнения распространяется собственная ударная волна. Она же вызывает излучение в линиях спектра оптического диапазона. В результате создаются яркие волокна, которые отлично просматриваются на фотографиях.

Самые яркие туманности, возникшие после ударных волн, созданы взрывами сверхновых звезд. Их называют остатками вспышек звезд. Они играют далеко не последнюю роль в формировании формы межзвездного газа. Они характеризуются малогабаритностью, слабостью и недолговечностью.

Существует еще один тип туманностей. Этот тип также создан впоследствии возникновения ударной волны. Но основная причина заключается в звездном ветре от звезд Вольфа – Райе. Звезды Вольфа имеют довольно мощный ветровой поток массы и скорость истечения. Они образуют туманности средних размеров с очень яркими волокнами. Сравнивая их с остатками вспышек сверхновых звезд, ученные утверждают, что радиоизлучение таких туманностей обладает тепловой природой. Туманности, которые расположены вокруг звезд Вольфа, живут недолго. Их существование напрямую зависит от продолжительности присутствия звезды в стадии звезды Вольфа – Райе.

Абсолютно аналогичные туманности находятся вокруг О-звезд. Это очень яркие горячие звезды, которые относятся к спектральному классу О. Они обладают сильным звездным ветром. В отличие от туманностей, расположенных вокруг звезд Вольфа – Райе, туманности О-звезд менее яркие, но имеют намного большие размеры и продолжительность существования.

Самые распространенные туманности находятся в областях звездообразования. Мало-скоростные ударные волны создаются в областях межзвездной среды. Именно в них происходит звездообразование. Такой процесс влечет за собой нагрев газа до сотен и даже тысяч градусов, частичное разрушение молекул, нагрев самой пыли, возбуждение молекулярных уровней. Подобные ударные волны имеют вид вытянутых туманностей и, как правило, светятся в инфракрасном диапазоне. Яркий пример подобного явления просматривается в созвездии Ориона.

Кроме звезд, в телескоп видны слабо светящиеся небольшие туманные пятна. Они получили название туманностей. Некоторые из них имеют довольно отчетливые очертания. В числе их наблюдаются немногочисленные так называемые планетарные туманности . Внутри каждой из них, в центре, всегда есть одна очень горячая звезда. Такие туманности состоят из разреженного газа, который удаляется во все стороны от центральной звезды со скоростью десятков километров в секунду. Если газовая оболочка вокруг звезды внутри полая, то туманность имеет вид кольца, как, например, туманность в созвездии Лиры. Но многие туманности не имеют определенной формы. Они похожи на клочковатый туман, растекающийся струями в разные стороны. Эти туманности называются диффузными. Их известно несколько сот.

Наиболее замечательной из них является туманность в Орионе. Она видима даже в слабый телескоп, а иногда и невооруженным глазом. В этой огромной диффузной туманности , как и в планетарных туманностях, светятся разреженные газы под действием света горячих звезд, находящихся внутри туманности . Иногда яркая звезда освещает встретившееся с ней облако пылинок, по размерам сравнимых с частицами дыма. Тогда в телескоп мы видим тоже светлую диффузную туманность, но уже не газовую, а пылевую. Множество туманностей в XIX в. открыли Вильям Гершель и его сын Джон, работавший, в частности, в Южной Африке, чтобы наблюдать там южное небо.

В XX столетии много газовых туманностей открыл и изучал в Крыму российский ученый Г. А. Шайн. В большинстве случаев пылевые туманности не светятся, так как поблизости обычно не бывает звезд, способных их ярко осветить. Эти темные пылевые туманности , нередко с отчетливо обрисованными краями, обнаруживаются, как прогалины, в светлых областях Млечного Пути. Такие туманности , как Конская голова (в Орионе, близ светлой диффузной туманности ), представляя собой скопления мельчайшей пыли, поглощают свет находящихся за ними звезд


Арабский астроном Ас-Суфи, живший в X веке н.э., описывает "маленькое небесное облачно", легко различимое в темные ночи вблизи звезды n (ню) созвездия Андромеды. В Европе на него обратили внимание только в начале XVII в. Современник Галилея и его соратник в первых телескопических наблюдениях неба астроном Симон Мариус в декабре 1612 г. впервые направил телескоп на эту странную небесную туманность. "Яркость ее, - пишет Мариус, - возрастает по мере приближения к середине. Она походит на зажженную свечу, если на нее смотреть сквозь прозрачную роговую пластинку".


На фотографиях, полученных наземными телескопами, туманность Menzel 3, или Mz3, напоминает своей формой муравья, поэтому ее неофициальное название - туманность Муравей. В 10 раз более детальные снимки туманности, полученные космическим телескопом Hubble, показывают строение "муравья" - выбросы вещества заканчивающей свою эволюцию Солнце-подобной звезды. Эти изображения туманности Mz3, а также еще одной планетарной туманности, также представляющей собой последние стадии жизни звезды, подобной Солнцу, показывают, что и наше светило, возможно, ожидают более сложные и интересные процессы, чем предполагалось до сих пор теорией эволюции таких звезд.

Ранее под определением «туманность» подразумевали всякое статичное явление в космосе, имеющее протяженную форму. Затем это понятие конкретизировали, более детально изучив загадочный объект. Попробуем разобраться, что из себя представляет подобный участок межзвездной среды.

Понятие туманности в космосе


Туманность является газовым облаком, внутри которого располагается огромное количество звезд. Сияние этих небесных тел позволяет облаку светиться различными цветами. Через специальные телескопы такие космические образования выглядят своеобразными пятнами с яркой основой.

Некоторые межзвездные участки имеют довольно четкие контуры. Множество же известных газовых скоплений - это клочкообразный туман, который растекается в разные стороны струями и имеет диффузную форму происхождения.

Пространство, которое находится между звездами туманности, не является пустой субстанцией. В довольно небольшом количестве здесь концентрируются частицы разнообразного характера, к которым можно отнести атомы некоторых веществ.

Разграничивают происхождение диффузных и планетарных образований в космосе. Природа их формирования значительно отличается одна от другой, поэтому необходимо внимательно разобраться в структуре возникновения разных туманностей. Планетарные объекты - это продукт деятельности основных звезд, а диффузные представляют из себя консистенцию после образования звезд.

В спиралеобразных рукавах галактик располагаются туманности диффузного происхождения. Такое космическое соединение из газа и пыли в большинстве случаев связано с масштабными и холодными облаками. В этой области формируются звезды, которые делают диффузную туманность очень яркой.

Образование подобного рода не имеет своего источника питания. Энергетически существует оно за счет звезд повышенной температуры, которые находятся рядом с ним или внутри. Цвет таких туманностей - преимущественно красный. Этот фактор связан с тем, что внутри них присутствует большое количество водорода. Оттенки зеленого и синего свидетельствуют о наличии в составе азота, гелия и некоторых тяжелых металлов.

В звездной области Ориона можно наблюдать очень маленькие туманности диффузного формирования. Данные образования очень малы на фоне гигантского облака, которое занимает практически весь описываемый объект. В созвездии Тельца реально зафиксировать только несколько туманностей рядом с довольно молодыми звездами типа Т. Такая разновидность свидетельствует о том, что имеется диск, который возникает вокруг ярких небесных тел.

Планетарная туманность в космосе представляет из себя оболочку, энергию которой на финальном этапе формирования сбрасывает звезда без запасов водорода в ядре. После таких изменений небесное тело превращается в красный гигант, способный отторгать свой поверхностный слой. Вследствие происшедшего внутренняя часть объекта имеет порой температуру, превышающую отметку в 100 градусов Цельсия. В итоге звезда деформируется таким образом, что становится белым карликом без источника энергии и тепла.

В 20-е годы прошлого столетия произошло размежевание определений «туманность» и «галактика». Случившееся разделение рассматривают на примере образования в районе Андромеды, которая является обширной галактикой из триллиона звезд.

Основные разновидности туманностей

Космическое образование классифицируют по разным параметрам. Выделяют такие виды туманностей: отражательные, темные, эмиссионные, планетарные газовые скопления и остаточный продукт после деятельности сверхновых звезд. Разделение касается и состава туманностей: бывает газовое и пылевое космическое вещество. В первую очередь обращают внимание на способность поглощать или рассеивать свет такими объектами.

Темная туманность


Темные туманности - это достаточно плотные соединения межзвездного газа и пыли, структура которых непрозрачна из-за пылевого воздействия. На фоне Млечного Пути изредка можно наблюдать скопления подобного рода.

Исследование таких объектов зависит от AV-показателя. Если данные довольно высоки, то опыты проводятся исключительно с помощью технологий субмиллиметровой и радиоволновой астрономии.

Примером такого образования может послужить Конская Голова, сформировавшаяся в созвездии Ориона.


Такие сосредоточения рассеивают свет, который несут рядом находящиеся звезды. Данный объект не является источником радиации, а только отражает сияние.

Газо-пылевое облако подобного типа зависит от месторасположения звезд. При близком расстоянии происходит потеря межзвездного водорода, что ведет к поступлению энергии за счет рассеянной галактической пыли. Скопление Плеяды - наилучший образец описываемого космического явления. В большинстве случаев такие газо-пылевые сгустки находятся недалеко от Млечного Пути.

Светлые туманности имеют такие подвиды:

  • Кометарные . Переменная звезда лежит в основе такого образования. Она освещает описываемый участок межзвездной среды, но имеет меняющуюся яркость. Размеры объектов исчисляются сотнями доли парсека, что свидетельствует о возможности детального изучения подобной концентрации газа и пыли в пространствах космоса.
  • Световое эхо . Такой феномен встречается довольно редко и исследуется еще с начала прошлого столетия. Созвездие Персея после вспышки в 2001 году сверхновой звезды позволило наблюдать подобное изменение космической сферы. Вспышки большой силы активизировали пыль, которая образовывала туманность умеренного типа в течение нескольких лет.
  • Отражающая субстанция с волокнистой структурой . Сотни или тысячи долей парсека - размеры этой разновидности. Силы магнитного поля звездного скопления раздвигаются под внешним давлением, после чего газово-пылевые объекты внедряются в эти поля и происходит образование своеобразной нити оболочки.
Следующее разделение на газовую и пылевую туманности весьма условно, потому что в каждом облаке присутствуют оба элемента. Но некоторые исследования позволяет разграничивать такие составы космической субстанции.

Газовая туманность


Подобные проявления космической деятельности имеют разную форму, и их виды можно обозначить следующими пунктами:
  1. Планетарные субстанции в форме кольца . В данном случае наблюдается такой тип туманности, как планетарная. Схема расположения ее составляющих очень проста: в центре видна основная звезда, вокруг которой происходят все внешние изменения.
  2. Волокна газа, которые выделяют свою энергию отдельно . Эти светящиеся газовые вещества формируются самым неожиданным способом в виде разрозненных сверкающих переплетений газа.
  3. Крабовидная туманность . Представляет из себя остаточные явления после взрыва звезды нового формата. Такое событие зафиксировано при изучении небесных тел, которые отражают свою энергию. В самом центре скопления находится пульсирующая нейтронная звезда, которая по некоторым показателям является одним из самых продуктивных источников галактической энергии.

Пылевая туманность


Данный вид туманности выглядит как своеобразный провал, выделяющийся на фоне светлого космического сгустка. Этот фрагмент можно наблюдать в созвездии Ориона, где подобный шлейф разделяет единое облако на две четкие зоны. На фоне Млечного Пути также встречаются пылевые участки, которые ярко выражены в области Змееносца (туманность Змея).

Изучать такое пылевое накопление реально только при помощи телескопа довольно большой мощности (диаметрально от 150 мм). Если пылевая туманность располагается неподалеку от яркой звезды, то она начинает отражать свет этого небесного тела и становится видимым явлением. Только на специальных снимках получится увидеть эту способность, которая близка к диффузным туманностям.


Главный показатель такого космического облака - это его высокая температура. Состоит оно из ионизированного газа, который формируется вследствие деятельности наиболее приближенной горячей звезды. Влияние ее заключается в том, что она активизирует и подсвечивает атомы туманности с помощью ультрафиолетового излучения.

Явление интересно тем, что по принципу образования и визуальным показателям напоминает неоновый свет. Как правило, объекты эмиссионного типа имеют красный цвет за счет большого скопления водорода в своем составе. Могут присутствовать дополнительные тона в виде зеленого и синего, которые образовались благодаря атомам других веществ. Самый яркий пример подобного звездного скопления - это знаменитая туманность Ориона.

Самые известные туманности

Самыми популярными в плане изучения считаются такие туманности: Ориона, Тройная туманность, Кольцо и Гантель.

Туманность Ориона


Подобное явление примечательно тем, что наблюдать его можно даже невооруженным глазом. Туманность Ориона относят к образованиям эмиссионного типа, которое располагается ниже поясной части Ориона.

Площадь облака впечатляет, потому что оно почти в четыре раза превышает размеры Луны в полной фазе. В северо-восточной части находится темное пылевое скопление, которое внесено в каталог под названием М43.

В самом облаке находится почти семьсот звезд, которые на данный момент еще формируются. Диффузная природа образования туманности Ориона делает объект очень ярким и красочным. Красные зоны свидетельствуют о наличии горячего водорода, а синие указывают на присутствие пыли, отражающей сияние голубоватых горячих звезд.

М42 - наиболее приближенное к Земле место, где формируются звезды. Такая колыбель небесных объектов расположена на расстоянии полторы тысяч световых лет от нашей планеты и приводит в восхищение сторонних наблюдателей.

Трехраздельная туманность


Тройная туманность находится в созвездии Стрельца и выглядит как три разделенные лепестки. Расстояние от Земли до облака точно вычислить сложно, но ученые ориентируются на параметры двух-девяти тысяч световых лет.

Уникальность подобного формирования заключается в том, что представлено оно сразу тремя видами туманностей: темной, светлой и эмиссионной.

М20 - это колыбель для развития молодых звезд. Подобные крупные небесные тела преимущественно голубого цвета, который образовался за счет ионизации скопившегося в той области газа. При наблюдении с помощью телескопа сразу бросаются в глаза две яркие звезды прямо по центру туманности.

При детальном изучении становится понятно, что объект словно разорван черным провалом на две части. Затем над этим разрывом можно заметить перекладину, которая придает туманности форму трех лепестков.

Кольцо


Кольцо, находящееся в созвездии Лиры, является одной из самых известных планетарных субстанций. Располагается оно на расстоянии двух тысяч световых лет от нашей планеты и считается довольно распознаваемым космическим облаком.

Светится Кольцо за счет присутствующего рядом белого карлика, а входящие в его состав газы выступают остатками выброшенной консистенции центральной звезды. Внутренняя часть облака мерцает зеленоватым цветом, что объясняется наличием в том участке линий эмиссионного характера. Образовались они после двойной ионизации кислорода, которая привела к формированию подобного оттенка.

Центральная звезда изначально была красным гигантом, но впоследствии превратилась в белый карлик. Рассмотреть ее реально только в мощные телескопы, потому что размеры крайне малы. Благодаря деятельности этого небесного тела возникла туманность Кольцо, которая в виде слегка вытянутого круга окутывает центральный источник энергии.

Кольцо - один из самых популярных объектов наблюдения как среди ученых, так и простых любителей космоса. Этот интерес обусловлен отличной видимостью облака в любое время года и даже в условиях городского освещения.

Гантель


Данное облако - это территория между звездами планетарного происхождения, которая находится в созвездии Лисички. Располагается Гантель на расстоянии около 1200 световых лет от Земли и считается очень популярным объектом для любительского изучения.

Даже при помощи бинокля образование легко можно распознать, если ориентироваться на созвездие Стрелы в северном полушарии звездного неба.

Форма М27 очень необычна и похожа на гантель, отчего облако и получило свое название. Иногда его именуют «огрызком», потому что контур туманности похож на надкушенное яблоко. Через газообразную структуру Гантели просвечивается несколько звезд, а при использовании мощного телескопа можно рассмотреть небольшие «уши» в яркой части объекта.

Изучение туманности в созвездии Лисички еще не закончено и предполагает множество открытий в этом направлении.

Существует довольно смелая гипотеза, что газово-пылевые туманности способны влиять на сознание человека. Павел Глоба считает, что такие образования могут полностью изменить жизнь некоторых людей. По мнению специалистов в области астрологии, туманности разрушительно воздействуют на органы чувств и изменяют сознание жителей Земли. Звездные скопления, по этой версии, способны контролировать продолжительность человеческого существования, укорачивая жизненный цикл или делая его более долгим. Считается, что туманности больше влияют на людей, чем звезды. Все это знаменитые астрологи объясняют тем, что существует некая программа, за которую ответственно определенное космическое облако. Механизм ее начинает действовать мгновенно, и повлиять на это человек не в состоянии.


Как выглядит туманность - смотрите на видео:


Туманности - великолепное явление внеземного происхождения, которое нуждается в детальном изучении. А вот о достоверности озвученного предположения о влиянии звездных скоплений на сознание человека судить сложно!

July 31st, 2010

Туманности. Часть I.

ТУМАННОСТИ . Раньше астрономы называли так любые небесные объекты, неподвижные относительно звезд, имеющие, в отличие от них, диффузный, размытый вид, как у маленького облачка (употребляемый в астрономии для «туманности» латинский термин nebula означает «облако»). Со временем выяснилось, что некоторые из них, например, туманность в Орионе, состоят из межзвездного газа и пыли и принадлежат нашей Галактике. Другие, «белые» туманности, как в Андромеде и в Треугольнике, оказались гигантскими звездными системами, подобными Галактике. Поэтому ученые пришли к выводу, что туманность — межзвездное облако, состоящее из пыли, газа и плазмы, выделяющееся своим излучением или поглощением по сравнению с окружающей его межзвёздной средой.

Типы туманностей . Туманности разделяют на следующие основные типы: диффузные туманности, или области H II, такие, как Туманность Ориона; отражательные туманности, как туманность Меропы в Плеядах; темные туманности, как Угольный Мешок, которые обычно связаны с молекулярными облаками; остатки сверхновых, как туманность Сеть в Лебеде; планетарные туманности, как Кольцо в Лире.

Вот это - NGC 2174 - яркая туманность в созвездии Орин.

NGC 2237 — эмиссионная туманность в созвездии Единорог. Является областью ионизированного водорода, где происходят процессы звездообразования.

Туманность Полумесяц. Или другое название - NGC 6888 (другое обозначение — LBN 203) — эмиссионная туманность в созвездии Лебедь.

Туманность Медуза, обычно едва уловимая и неяркая, запечатлена на этом прекрасном телескопическом изображении, представленном в условных цветах. На небе туманность располагается у ног небесных Близнецов, а по ее бокам находятся звезды μ и η Близнецов. Сама туманность Медуза на картинке находится внизу справа. Это как бы светящийся серп эмиссионного газа с свисающими щупальцами. Туманность Медуза является частью остатка сверхновой IC 443 — расширяющегося пузыря, оставшегося от взрыва массивной звезды. Первый свет от того взрыва дошел до Земли 30 тысяч лет назад. Также как и в ее сестре, плавающей по космическим морям, Крабовидной туманности, в остатке IC 443 живет нейтронная звезда — сжавшееся ядро звезды. Туманность Медуза находится в пяти тысячах световых лет от нас. Изображение покрывает область размером 300 световых лет. Остальное же поле на изображении занимает эмиссионная туманность Шарплес 249.

Туманность в созвездии Тукан или NGC 346 относится к классу эмиссионных, то есть представляет собой облако горячего газа и плазмы. Ее протяженность составляет около 200 световых лет. Причиной высокой температуры NGC 346 является большое количество молодых звезд в регионе. Возраст большинства светил составляет всего несколько миллионов лет. Для сравнения, возраст Солнца составляет около 4, 5 миллиарда лет.

Крабовидная туманность (M1, NGC 1952, разг. «Краб») — газообразная туманность в созвездии Тельца, являющаяся остатками сверхновой. Расположена на расстоянии около 6500 световых лет от Земли, имеет диаметр в 6 световых лет и расширяется со скоростью в 1000 км/с. В центре туманности находится нейтронная звезда.

NGC 1499 (другое обозначение — LBN 756, туманность Калифорния) — эмиссионная туманность в созвездии Персей. Обладает красноватым цветом, а по форме напоминает очертания американского штата Калифорния. Протяжённость туманности составляет около 100 световых лет, расстояние от Земли — 1500 световых лет.

Туманность Вуаль, также туманность Петля или туманность Рыбачья сеть — диффузная туманность в созвездии Лебедя, огромный и относительно тусклый остаток сверхновой. Звезда взорвалась примерно 5000-8000 лет назад, и за это время туманность покрыла на небе область в 3 градуса. Расстояние до неё оценивается в 1400 световых лет. Эта туманность была открыта 5 сентября 1784 года Уильямом Гершелем.

Одна из нескольких «пылевых колонн» туманности Орёл, в которой может угадываться изображение мифического существа. Имеет размер около десяти световых лет.

Туманность Орёл (также известная как Объект Мессье 16, M16 или NGC 6611) — молодое рассеянное звёздное скопление в созвездии Змеи.

Колонны пыли, в которых формируются новые звезды в туманности Орел. Снимок получен с помощью телескопа Хаббл.

NGC 281 (другие обозначения — IC 11, LBN 616) — эмиссионная туманность в созвездии Кассиопея. Является областью ионизированного водорода, где происходят процессы активного звездообразования. Находится на расстоянии около 10 тыс. Световых лет от Земли. За форму туманность получила название Туманность Пакман (Pac-Man) в честь персонажа одноимённой аркадной компьютерной игры.Туманность флюоресцирует красным светом под действием ультрафиолетового облучения, источником которого являются горячие молодые звёзды рассеянного скопления IC 1590. В туманности присутствуют также тёмные пылевые структуры.

Вы видите известные очертания в неизвестном месте! Эта эмиссионная туманность широко известна, поскольку она похожа на один из континентов планеты Земля - Северную Америку. Справа от туманности Северная Америка, которая также обозначается NGC 7000, находится менее яркая туманность Пеликан. Эти две туманности составляют в поперечнике примерно 50 световых лет и находятся от нас на расстоянии 1500 световых лет. Они разделены темным поглощающим облаком.

Туманность Ориона (также известная как Мессье 42, М42 или NGC 1976) является светящейся эмиссионной туманностью с зеленоватым оттенком и находится ниже Пояса Ориона. Это самая яркая диффузная туманность. «Большая Туманность Ориона» наряду с «Туманностью Андромеды», Плеядами и «Магеллановыми Облаками» входит в число известнейших объектов дальнего космоса. Это, пожалуй, самый притягательный для любителей астрономии зимний объект северного неба. Немногие астрономические виды так возбуждают воображение, как эти близкие звездные ясли, известные как Туманность Ориона. Светящийся газ туманности окружает горячие молодые звезды на краю огромного межзвездного молекулярного облака на расстоянии всего 1500 световых лет.

Туманность Гантель (также известная как Объект Мессье 27, М27, или NGC 6853) является планетарной туманностью в созвездии Лисички, находится на расстоянии 1250 световых лет от Земли. Ее возраст оценивается от 3000 до 4000 лет. Эта планетарная туманность один из самых замечательных объектов для любительских наблюдений. М27 — крупная, относительно яркая и при этом легко находится.Эта фотография получена на компьютере методом narrow-band imaging, когда совмещаются снимки, сделанные телескопами в разных волновых диапазонах: видимом, инфракрасном, ультра-фиолетовом и т.д.

Туманность Эскимос была открыта астрономом Уильямом Гершелем в 1787 году. Если на туманность NGC 2392 смотреть с поверхности Земли, то она похожа на голову человека как будто бы в капюшоне. Если смотреть на туманность из космоса, как это сделал космический телескоп им. Хаббла в 2000 году, после обновления, то она представляет собой газовое облако сложнейшей внутренней структуры, над строением котором ученые ломают головы до сих пор. Туманность Эскимос относится к классу планетарных туманностей, т.е. представляет собой оболочки, которые 10 тысяч лет назад были внешними слоями звезды типа Солнца. Внутренние оболочки, которые видны на картинке сегодня, были выдуты мощным ветром от звезды, находящейся в центре туманности. "Капюшон" состоит из множества относительно плотных газовых волокон, которые, как это запечатлено на картинке, светятся в линии азота оранжевым светом. Туманность Эскимос находится на расстоянии 5 тысяч световых лет от нас, и ее можно обнаружить в небольшой телескоп в направлении на созвездие созвездие Близнецов.

На фоне россыпи звезд в центральной части Млечного Пути и в известном созвездии Змееносца извиваются темные туманности. S-образная темная деталь в центре этого снимка с широким полем имеет название Туманность Змея.

Туманность Карина, находится в южном созвездии Киль на расстоянии от нас 6500-10000 св. лет. Это одна из самых ярких и крупных диффузных туманностей на небе. В ней много массивных звезд и идет активное звездообразование. Эта туманность содержит необычно высокую концентрацию молодых массивных звезд - результат взрывного звездообразования произошедшего приблизительно 3 миллиона лет назад. Туманность содержит более десятка крупных звезд, масса которых в 50-100 раз превышает массу нашего Солнца. Самая яркая из них - Карина - в ближайшем будущем должна закончить свое существование взрывом сверхновой.

Выдутое ветром массивной звезды, это межзвездное видение имеет удивительно знакомую форму. Занесенное в каталог как NGC 7635, оно больше известно просто как туманность Пузырь. Хотя этот пузырь диаметром в 10 световых лет и выглядит изящным, он свидетельствует о действии весьма бурных процессов. Выше и правее центра пузыря находится яркая, горячая звезда Вольфа-Райе, масса которой от 10 до 20 раз больше массы Солнца. Сильный звездный ветер и мощное излучение звезды сформировали эту структуру из светящегося газа в окружающем молекулярном облаке. Привлекающая внимание туманность Пузырь находится на расстоянии всего в 11 тысяч световых лет в созвездии Кассиопеи.

На снимках: район скопления "Трапеция" в туманности Ориона, названного по четырем ярчайшим звездам, образующим нечто близкое к трапеции. Левый снимок сделан в видимом свете, правый - в инфракрасном. На левом снимке видны только обычные звезды, не закрытые пылевыми облаками. На правом добавляются звезды, находящиеся внутри газовых пылевых облаков, и около 50 слабых объектов, называемых "бурыми карликами".

По материалам Астронета, Википедии и Духовно-философского форума А108.



Что еще почитать